Thinking in C++ 2™ edition
Volume 2: Standard Libraries &
Advanced Topics

To beinformed of future releases of this document and other information about object-
oriented books, documents, seminars and CDs, subscribe to my free newsletter. Just send any
email to: join-eckel-oo-programming@earth.lyris.net

mailto:join-eckel-oo-programming@earth.lyris.net

“This book is atremendous achievement. Y ou owe it to yourself to have a
copy on your shelf. The chapter on iostreams is the most comprehensive and
understandable treatment of that subject I’ ve seen to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Jour nal

“Eckel’ sbook is the only one to so clearly explain how to rethink program
construction for object orientation. That the book is also an excellent tutorial
on theins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with hisinsight into C++, and Thinking in
C++ ishisbest collection of ideas yet. If you want clear answers to difficult
guestions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of when and
how to useinlines, references, operator overloading, inheritance and dynamic
objects, as well as advanced topics such as the proper use of templates,
exceptions and multiple inheritance. The entire effort iswoven in afabric that
includes Eckel’ s own philosophy of object and program design. A must for
every C++ developer’ s bookshelf, Thinking in C++ isthe one C++ book you
must have if you’ re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
In

C++

2" Edition, Volume 2

Bruce Eckel
President, MindView Inc.

© 1999 by Bruce Eckel, MindView, Inc.

The information in this book is distributed on an “asis’ basis, without warranty. While
every precaution has been taken in the preparation of this book, neither the author nor the
publisher shall have any liability to any person or entitle with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by instructions contained in this book or by the
computer software or hardware products described herein.

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means including information storage and retrieval systems without permission in writing
from the publisher or author, except by areviewer who may quote brief passagesin areview. Any of the
names used in the examples and text of this book are fictional; any relationship to persons living or dead
or tofictiona charactersin other worksis purely coincidental.

dedication

To the scholar, the healer, and the muse

What'sinside...

Thinking in C++ 2™ edition Volume 2: Standard Libraries & Advanced Topics Revision 1, xx 1999

.. 1
Preface 13
What's new in the second edition13
What'sin Volume 2 of thisbook 14
How to get Volume2.........cccceeneee 14
PrereqUiSItes......ccoovvveveeeeeenn, 14
Learning CH++..cecevveececeeeenn, 14
GOAS....cirireee e 16
Chapters......ccoeeeeveie e 17
EXErciSeS...ccocovvevvccecieceecveen, 18
Exercise solutions..........ccceeeeererienene 18
Source Code.......ooevneneenienienenn 18
Language standards.................... 20
Language SUPPOrt........c.cceeeeereeriinenne 20
The book’'s CD ROM 20
Seminars, CD Roms & consulting20
EIMOrs. ..o 21
Acknowledgements.................... 21
Part 1. The Standard C++ Library
Library overview...........ccccceeenee. 24
1: Strings 27
What'sinastring.......ccccoeeeeenen. 27
Creating and initializing C++ strings 29
Operating on strings........cccveee... 31
Appending, inserting and concatenating strings 32
Replacing string characters................ 34
Concatenation using non-member overloaded operators 37
Searching in strings.........cccc...... 38
Finding in reverse
Finding first/last of aset........cc.cceuee 44
Removing characters from strings.....45

Comparing strings...
USING iterators........coeereeerreneeenieenes

A string application.................... 58
SUMMATY ..o 61
EXErCISES...cvviieiriieeneseeeie 62
2: lostreams 63
Why iostreams?..........ccocevvreeenen. 63
True WrappPiNg......ccoeeevererereerenereenes 65
lostreamsto the rescue............... 67
Sneak preview of operator overloading68
Inserters and extractors............cc.ce.... 69
COMMON USBQE.c.venerveeenereereenenrenens 70
Line-oriented input...........coccoeevrennnne 72
Fileiostreams........cccceoevceeeenennen. 74
OpPEN MOUESccoeveveiirieicenesieienes 76
lostream buffering........ccccceeveeee 76
Using get() with astreambuf............ 78
Seeking iniostreams.................. 78
Creating read/writefiles.........c.c....... 80
SNGSIreams......cccoeveerereneeenne 81
SIrSIrEaMS ... 81
User-allocated storage.........coccoevvenene 81
Automatic storage allocation............. 84
Output stream formatting........... 87
Internal formatting data............c.c...... 88
An exhaustive example...........cccceeee 92
Formatting manipulators............ 95
Manipulators with arguments............ 96
Creating manipulators................ 99
Effectors.......ccoveevnncienccne 100
lostream examples.................... 102
Code generationcceeeeereeennenens 102
A simpledataloggercccceeeveeene 110
Counting editorcoveeevericernenn 117
Breaking up big files........ccoocevenne 118
SUMMAY ..o 120
EXEICISES. ..o 120

3: Templatesin depth 121

Nontype template arguments ... 121

Default template arguments..... 122
The typename keyword............ 122
Typedefing atypename................... 124
Using typename instead of class....124
Function templates................... 124
A string conversion system............. 125
A memory allocation system........... 126
Type induction in function templates 129

Taking the address of a generated function template 130

Chapter 2: Hiding the Implementation

Local classesintemplates........ 131
Applying afunctionto an STL sequence 131
Template-templates.................. 134

Member function templates...... 135
Why virtual member template functions are disallowed

Nested template classes................... 137
Template speciadizations.......... 137
Full specialization............ ...137
Partial Specialization.... 137
A practical example...... ... 137
Design & efficiencycccccveeveenne 141
Preventing template bloat................ 141
Explicit instantiation................ 143
Explicit specification of template functions 144

Contralling template instantiation144
The inclusion vs. separation models145
The export keywordccceueeee. 145

Template programming idioms 145
The “curiously-recurring template” . 145

4: STL Containers & lteratorsl47

Containers and iterators........... 147
STL reference documentation......... 149
The Standard Template Library 149
The basic concepts........ccc...... 151
Containers of strings................ 155
Inheriting from STL containers 157
A plethora of iterators.............. 159
Iteratorsin reversible containers.....161
Iterator categories.........ocovvveerenenes 162
Predefined iterators........c.cooeevveeene 163
Basic sequences: vector, list & deque 169
Basic sequence operations............... 169
VECHON .. 172

Cost of overflowing allocated storagel73
Inserting and erasing elements........ 177

Cost of overflowing allocated storagel82
Checked random-access.................. 184

Specid list operations.............187
Swapping al basic sequences.......... 191

Robustness of lists.........ccoeune 192
Performance comparison 193
SEL . 198
Eliminating strtok()ccccoeevennne. 199
StreamTokenizer: amore flexible solution 201

Chapter 2: Hiding the Implementation

SACK e,

QUEUE. ... eeeeeeeeeeereeseesie e eeeeneeneas

Priority queues

Holding bits........ccccoevvivvieeiiennne
bitset<n>
vector <bool>

Associative containers............. 232
Generators and fillers for associative containers 236
The magic of Maps.......ccccceeevrenene. 239
Multimaps and duplicate keys......... 244
MUIISELSocvvevecrecrecececeeeeee 247

Combining STL containers...... 250
Cleaning up containers of pointers253
Creating your own containers.. 255
Freely-available STL extensions257

SUMMAY ... 259
EXErCiSes....coovvevrineeeniiseee 260
5: STL Algorithms 263
Function objects.........ccoceeeueeene 263

Classification of function objects....264
Automatic creation of function objects265
SGI eXtensions........cocceeeereneeeniennns 279

A catalog of STL algorithms.... 285
Support tools for example creation..287
Filling & generating.........coccccevnenee
Countingcccoeveereeenereeenne .
Manipulating sequences
Searching & replacing.........

Comparing ranges...............
Removing eements..........cccccceveene
Sorting and operations on sorted ranges311

Heap operations...........ccceveeeeeneeene 322

Applying an operation to each element in arange 323

Numeric algorithms...........cocccceenenee 331

General utilities........ccooveeinricnnnene. 334
Creating your own STL-style algorithms 336
SUMMAY ... 337
EXErCiSeS....covviriirrereerreienennee 337

Part 2: Advanced Topics 341

6: Multiple inheritance 342

Perspective.......cccoovvvvvceeieennnns 342
Duplicate subobjects................ 344
Ambiguous upcasting............... 345
virtual base classes...........cc..... 346

Chapter 2: Hiding the Implementation

The "most derived” class and virtual baseinitialization 348
"Tying off" virtual bases with a default constructor 349

Overhead........ccoovoineienenennen. 351
UpPCastingcccceeeeeereenieneesiennnn 352

Persistenceoccevvvceecnnecnes 355
Avoiding Mlcccooovvvvveeen 362
Repairing an interface.............. 362
SUMMAY ... 367
EXErCiSeS. ..o 368

7: Exception handling

Error handlinginC
Throwing an exception
Catching an exception..............
Thetry blocKccoeveenireince.
Exception handlers.................. .
The exception specification
Better exception specifications?......377
Catching any exception...................
Rethrowing an exception .
Uncaught exceptions...........
Function-level try blocks................. 380
Cleaning up....cccccevvveverseeeieenen 380
CONStruCtorsS.coceeeveevveernnennn 384
Making everything an object........... 386
Exception matching 388
Standard exceptions................. 390
Programming with exceptions . 391
When to avoid exceptions............... 391
Typical uses of exceptions.............. 392
Overhead........cccooovvneneneniennen. 396
SUMMAY ... 397
EXErCiSeS...ccoiirine e 397

The “Shape” example............... 399
What iSRTTI?...ccccoviveieeen 400
Two syntaxesfor RTTIcccceueeee. 400
Syntax specifiCs.......ovvrereeenen. 404
typeid() with built-in types............ 404
Producing the proper type name......405
Nonpolymorphic types..........ccoceeue 405
Cadting to intermediate levels.......... 406
VOId POINEES ... 408
Using RTTI with templates............. 408
References.......ccoevvvceeeeevcvieenn. 409
EXCEPLiONS.......ceveeieeeeeeeeee 410
Multiple inheritance................. 411

Chapter 2: Hiding the Implementation

Sensible usesfor RTTI............. 412

Revisiting the trash recycler 413
Mechanism & overhead of RTT1416
Creating your own RTTl........... 416
Explicit cast syntaX 420
SUMMAY ... 421
EXErCiSES..coveevrne e sieeeeieneens 422
9: Building stable systems 423
Shared objects & reference counting 423

Reference-counted class hierarchies423
The canonical object & singly-rooted hierarchies 423

An extended canonical form............ 424
Design by contract 424
Integrated unit testing 424
Dynamic aggregation............... 424
EXErCISES. ..o 428

10: Design patterns 429
The pattern concept.................. 429

The Singleton.........ccoeeerereeencnenne. 430
Classifying patterns.................. 434

Features, idioms, patterns................ 435

Basic complexity hiding.................. 435
Factories. encapsulating object creation 436

Polymorphic factories............cocue.. 438

Abstract factories........cccveveerenenne

Virtual constructors...........cccevveveeene
Callbacks......ccccovvreirinien

Functor/Command.coccceenenee

SUAEGY ..

ODSENVESovvceiieiiians
Multiple dispatching

Visitor, atype of multiple dispatching463
EfficienCy...cccevcevievecireeene 466

Flyweightcocvieeieeeeeee 466
The composite........ccocvvvrveneene 466
Evolving a design: the trash recycler 466
Improving the design................ 471

“Make more objects’.........cccerenne. 471

A pattern for prototyping creation...476
Abstracting usage..........c.ccc..... 488

Applying double dispatching ... 492

Implementing the double dispatch...492
Applying the visitor pattern..... 497
RTTI considered harmful?....... 503

Chapter 2: Hiding the Implementation

11: Tools & topics 509
The code extractor 509
Debugging......ccocevvverreerieeieenenns 531

255 8 £ () FE TSRS P 531
TraCe@ MACIOS.......ccvvveereeireesrresreennenn 531
Tracefil .o 532

Abstract base class for debugging...533
Tracking new/delete & malloc/free533

CGI programming in C++........ 539
Encoding datafor CGlccceuue. 540
The CGl parser......cccoveeeenerevveuncnns

Using POSTccccoueueee
Handling mailing lists
A general information-extraction CGI program 560

Parsing the datafiles.........cccveuene 566

SUMMAY ... 573
EXErCISES. ..o 573

A: Recommended reading 575
G 575

Genera CHt...eeeececie 575

My own list of boOKS..........ccccevueenne 576

Depth & dark corners............... 576

The STL .o 576

Design Patterns..........cceeeeevenene 576

B:Compiler specifics 577
I ndex 580

Chapter 2: Hiding the Implementation

Preface

Like any human language, C++ provides away to express
concepts. If successful, this medium of expression will be
significantly easier and more flexible than the alternatives as
problems grow larger and more compl ex.

You can't just look at C++ as a collection of features; some of the features make no sensein
isolation. Y ou can only use the sum of the parts if you are thinking about design, not simply
coding. And to understand C++ in thisway, you must understand the problems with C and
with programming in general. This book discusses programming problems, why they are
problems, and the approach C++ has taken to solve such problems. Thus, the set of features|
explain in each chapter will be based on the way that | see a particular type of problem being
solved with the language. In thisway | hope to move you, alittle at atime, from
understanding C to the point where the C++ mindset becomes your native tongue.

Throughout, I'll be taking the attitude that you want to build a model in your head that allows
you to understand the language all the way down to the bare metal; if you encounter a puzzle
you'll be able to feed it to your model and deduce the answer. | will try to convey to you the
insights which have rearranged my brain to make me start “thinking in C++.”

What' s new in the second

This book is athorough rewrite of the first edition to reflect all the changes introduced in C++
by the finalization of the ANSI/ISO C++ Standard. The entire text present in the first edition
has been examined and rewritten, sometimes removing old examples, often changing existing
examples and adding new ones, and adding many new exercises. Significant rearrangement
and re-ordering of the material took place to reflect the availability of better tools and my
improved understanding of how people learn C++. A new chapter was added which isarapid
introduction to the C concepts and basic C++ features for those who haven’t been exposed.
The CD ROM bound into the back of the book contains a seminar which is an even gentler
introduction to the C concepts necessary to understand C++ (or Java). It was created by

Chuck Allison for my company (MindView, Inc.) and it’s called “Thinking in C: Foundations
for Javaand C++.” It introduces you to the aspects of C that are necessary for you to move on

13

to C++ or Java (leaving out the nasty bits that C programmers must deal with on a day-to-day
basis but that the C++ and Java languages steer you away from).

So the short answer is: what isn’t brand new has been rewritten, sometimes to the point where
you wouldn’t recognize the original examples and material.

What’sin Volume 2 of this book

The completion of the C++ Standard also added a number of important new libraries such as
string and the Standard Template Library (STL) aswell as new complexity in templates.
These and other more advanced topics have been relegated to Volume 2 of this book,
including issues like multiple inheritance, exception handling, design patterns and topics
about building stable systems and debugging them.

How to get Volume 2

Just like the book that you currently hold, Thinking in C++, Volume 2 is freely downloadable
inits entirety from my web site at www.BruceEckel.com. The final version of Volume 2 will
be completed and printed in late 2000 or early 2001.

The web site also contains the source code for both the books, along with updates and
information about CD ROMs, public seminars, and in-house training, consulting, mentoring
and walk-throughs.

Prerequisites

In the first edition of thisbook, | decided to assume that someone else had taught you C and
that you have at least areading level of comfort with it. My primary focus was on simplifying
what | found difficult — the C++ language. In this edition | have added a chapter that isavery
rapid introduction to C, along with the Thinking in C seminar-on-CD, but still assuming that
you have some kind of programming experience already. In addition, just as you learn many
new words intuitively by seeing them in context in anovel, it's possible to learn a great deal
about C from the context in which it isused in the rest of the book.

Learning C++

| clawed my way into C++ from exactly the same position as | expect many of the readers of
this book will: As aprogrammer with a very no-nonsense, nuts-and-bolts attitude about
programming. Worse, my background and experience was in hardware-level embedded
programming, where C has often been considered a high-level language and an inefficient
overkill for pushing bits around. | discovered later that | wasn’t even avery good C
programmer, hiding my ignorance of structures, malloc() & free(), setjmp() & longjmp(),

Preface 14

http://www.bruceeckel.com/

and other “sophisticated” concepts, scuttling away in shame when the subjects came up in
conversation rather than reaching out for new knowledge.

When | began my struggle to understand C++, the only decent book was Stroustrup’s self-
professed “expert’s guide,1 ” so | was |eft to simplify the basic concepts on my own. This
resulted in my first C++ book,2 which was essentially a brain dump of my experience. That
was designed as a reader’ s guide, to bring programmersinto C and C++ at the same time.
Both editions3 of the book garnered an enthusiastic response.

At about the same time that Using C++ came out, | began teaching the languagein live
seminars and presentations. Teaching C++ (and later, Java) became my profession; |’ ve seen
nodding heads, blank faces, and puzzled expressionsin audiences all over the world since
1989. As| began giving in-house training with smaller groups of people, | discovered
something during the exercises. Even those people who were smiling and nodding were
confused about many issues. | found out, by creating and chairing the C++ and Java tracks at
the Software Development Conference for many years, that | and other speakers tended to
give the typical audience too many topics, too fast. So eventually, through both variety in the
audience level and the way that | presented the material, | would end up losing some portion
of the audience. Maybe it’s asking too much, but because | am one of those people resistant to
traditional lecturing (and for most people, | believe, such resistance results from boredom), |
wanted to try to keep everyone up to speed.

For atime, | was creating a number of different presentationsin fairly short order. Thus, |
ended up learning by experiment and iteration (a technique that also workswell in C++
program design). Eventually | developed a course using everything | had learned from my
teaching experience. It tackles the learning problem in discrete, easy-to-digest steps and for a
hands-on seminar (the ideal |earning situation), there are exercises following each of the
presentations.

Thefirst edition of this book developed over the course of two years, and the material in this
book has been road-tested in many forms in many different seminars. The feedback that I've
gotten from each seminar has helped me change and refocus the material until | feel it works
well as ateaching medium. But it isn't just a seminar handout — | tried to pack as much
information as | could within these pages, and structure it to draw you through, onto the next
subject. More than anything, the book is designed to serve the solitary reader, struggling with
anew programming language.

1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first edition).
2 Using C++, Osborne/McGraw-Hill 1989.

3 Using C++ and C++ Inside & Out, Osborne/McGraw-Hill 1993.

Preface 15

Goals

My goalsin this book are to:

1.

Present the material asimple step at atime, so the reader can easily digest
each concept before moving on.

Use examplesthat are as simple and short as possible. This sometimes
prevents me from tackling “real-world” problems, but I’ ve found that
beginners are usually happier when they can understand every detail of an
example rather than being impressed by the scope of the problem it solves.
Also, there's a severe limit to the amount of code that can be absorbed in a
classroom situation. For this| sometimes receive criticism for using “toy
examples,” but I'm willing to accept that in favor of producing something
pedagogically useful.

Carefully sequence the presentation of features so that you aren’t seeing
something you haven’t been exposed to. Of course, thisisn't always
possible; in those situations, a brief introductory description will be given.

Give you what | think isimportant for you to understand about the
language, rather than everything | know. | believe there is an “information
importance hierarchy,” and there are some facts that 95% of programmers
will never need to know, but that would just confuse people and add to their
perception of the complexity of the language. To take an example from C, if
you memorize the operator precedence table (I never did) you can write
clever code. But if you have to think about it, it will confuse the
reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear. This same attitude will be taken with
some information in the C++ language, which | think is more important for
compiler writers than for programmers.

Keep each section focused enough so the lecture time — and the time
between exercise periods —is small. Not only does this keep the audience’
minds more active and involved during a hands-on seminar, but it givesthe
reader a greater sense of accomplishment.

Provide the reader with a solid foundation so they can understand the issues
well enough to move on to more difficult coursework and books (in
particular, Volume 2 of this book).

I’ ve endeavored not to use any particular vendor’s version of C++ because,
for learning the language, | don’t feel like the details of a particular

Preface

16

implementation are as important as the language itself. Most vendors
documentation concerning their own implementation specifics is adequate.

Chapters

C++ isalanguage where new and different features are built on top of an existing syntax.
(Because of thisit is referred to as a hybrid object-oriented programming language.) As more
people have passed through the learning curve, we' ve begun to get afeel for the way
programmers move through the stages of the C++ language features. Because it appearsto be
the natural progression of the procedurally-trained mind, | decided to understand and follow
this same path, and accel erate the process by posing and answering the questions that came to
me as | learned the language and that came from audiences as | taught it.

This course was designed with one thing in mind: to streamline the process of learning the
C++ language. Audience feedback helped me understand which parts were difficult and
needed extraillumination. In the areas where | got ambitious and included too many features
all at once, | came to know — through the process of presenting the material — that if you
include alot of new features, you have to explain them all, and the student’s confusion is
easily compounded. As aresult, I’ ve taken a great deal of trouble to introduce the features as
few at atime as possible; ideally, only one major concept at atime per chapter.

The goal, then, isfor each chapter to teach a single concept, or a small group of associated
concepts, in such away that no additional features are relied upon. That way you can digest
each piece in the context of your current knowledge before moving on. To accomplish this, |
leave some C featuresin place for longer than | would prefer. The benefit is that you will not
be confused by seeing all the C++ features used before they are explained, so your
introduction to the language will be gentle and will mirror the way you will assimilate the
featuresif left to your own devices.

Here isabrief description of the chapters contained in this book:

(5) Introduction to iostreams. One of the origina C++ libraries— the one that provides the
essential 1/0 facility —is called iostreams. lostreams is intended to replace C's stdio.h with an
I/O library that is easier to use, more flexible, and extensible — you can adapt it to work with
your new classes. This chapter teaches you the ins and outs of how to make the best use of the
existing iostream library for standard 1/0, file 1/O, and in-memory formatting.

(15) Multiple inheritance. This sounds simple at first: A new classis inherited from more
than one existing class. However, you can end up with ambiguities and multiple copies of
base-class objects. That problem is solved with virtual base classes, but the bigger issue
remains. When do you use it? Multiple inheritance is only essential when you need to
manipulate an object through more than one common base class. This chapter explains the
syntax for multiple inheritance, and shows alternative approaches — in particular, how
templ ates solve one common problem. The use of multiple inheritance to repair a “ damaged”
classinterface is demonstrated as a genuinely valuable use of this feature.

Preface 17

(16) Exception handling. Error handling has always been a problem in programming. Even if
you dutifully return error information or set aflag, the function caller may simply ignore it.
Exception handling is a primary feature in C++ that solves this problem by allowing you to
“throw” an object out of your function when a critical error happens. Y ou throw different
types of objects for different errors, and the function caller “catches’ these objects in separate
error handling routines. If you throw an exception, it cannot be ignored, so you can guarantee
that something will happen in response to your error.

(17) Run-time type identification. Run-time type identification (RTTI) lets you find the
exact type of an object when you only have a pointer or reference to the base type. Normally,
you' [l want to intentionally ignore the exact type of an object and let the virtual function
mechanism implement the correct behavior for that type. But occasionally it is very helpful to
know the exact type of an object for which you only have a base pointer; often this
information allows you to perform a special-case operation more efficiently. This chapter
explainswhat RTTI isfor and how to useit.

Exercises

I’ve discovered that simple exercises are exceptionally useful during a seminar to complete a
student’ s understanding, so you'll find a set at the end of each chapter.

These are fairly simple, so they can be finished in areasonable amount of time in a classroom
situation while the instructor observes, making sure all the students are absorbing the material.
Some exercises are a bit more challenging to keep advanced students entertained. They're all
designed to be solved in a short time and are only there to test and polish your knowledge
rather than present major challenges (presumably, you'll find those on your own — or more
likely they'Il find you).

Exercise solutions

Solutions to exercises can be found in the electronic document The C++ Annotated Solution
Guide, Volume 2 by Chuck Allison, available for a small fee from www.BruceEckel.com. [[
Note thisis not yet available]]

Source code

The source code for this book is copyrighted freeware, distributed via the web site
http://mww.BruceEckel .com. The copyright prevents you from republishing the code in print
media without permission.

Although the code is available in a zipped file on the above web site, you can also unpack the
code yourself by downloading the text version of the book and running the program
ExtractCode (from Volume 2 of this book), the source for which is also provided on the Web

Preface 18

http://www.bruceeckel.com/

site. The program will create a directory for each chapter and unpack the code into those
directories. In the starting directory where you unpacked the code you will find the following
copyright notice:

/1:1 :CopyRi ght.txt

Copyright (c) Bruce Eckel, 1999

Source code file fromthe book "Thinking in C++"
Al rights reserved EXCEPT as al |l owed by the
follow ng statenents: You can freely use this file
for your own work (personal or commercial),

i ncluding nodifications and distribution in
executable formonly. Perm ssion is granted to use
this file in classroomsituations, including its
use in presentation materials, as long as the book
"Thinking in C++" is cited as the source.

Except in classroomsituations, you cannot copy
and distribute this code; instead, the sole

di stribution point is http://ww.BruceEckel.com
(and official mrror sites) where it is

freely avail able. You cannot renove this

copyright and notice. You cannot distribute
nodi fi ed versions of the source code in this
package. You cannot use this file in printed

medi a wi thout the express permssion of the

aut hor. Bruce Eckel nmkes no representation about
the suitability of this software for any purpose.
It is provided "as is" wthout express or inplied
warranty of any kind, including any inplied
warranty of merchantability, fitness for a
particul ar purpose or non-infringenent. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publ i sher shall not be liable for any danages
suffered by you or any third party as a result of
using or distributing software. In no event wll
Bruce Eckel or the publisher be liable for any

| ost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
puni ti ve damages, however caused and regardl ess of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Eckel
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of al

Preface 19

necessary servicing, repair, or correction. If you
think you've found an error, please subnit the
correction using the formyou will find at

www. BruceEckel . com (Please use the sane

formfor non-code errors found in the book.)

1]~

Y ou may use the code in your projects and in the classroom as long as the copyright notice is
retained.

L anguage standards

Throughout this book, when referring to conformance to the ANSI/ISO C standard, | will
generally just say ‘C.’ Only if it is necessary to distinguish between Standard C and older,
pre-Standard versions of C will | make the distinction.

At thiswriting the ANSI/ISO C++ committee was finished working on the language. Thus, |
will use theterm Standard C++ to refer to the standardized language. If | simply refer to C++
you should assume | mean “Standard C++.”

L anguage support
Y our compiler may not support all the features discussed in this book, especialy if you don’t
have the newest version of your compiler. Implementing a language like C++ isaHerculean
task, and you can expect that the features will appear in pieces rather than all at once. But if
you attempt one of the examplesin the book and get alot of errors from the compiler, it’s not
necessarily a bug in the code or the compiler — it may simply not be implemented in your
particular compiler yet.

The book’s CD ROM

Seminars, CD Roms &
consulting

My company, MindView, Inc., provides public hands-on training seminars based on the
material in this book, and also for advanced topics. Selected material from each chapter
represents alesson, which is followed by a monitored exercise period so each student receives
personal attention. We also provide on-site training, consulting, mentoring, and design & code

Preface 20

walkthroughs. Information and sign-up forms for upcoming seminars and other contact
information can be found at http://www.BruceEckel.com.

Errors

No matter how many tricks awriter uses to detect errors, some always creep in and these
often leap off the page for a fresh reader. If you discover anything you believe to be an error,
please use the correction form you will find at http://www.BruceEckel.com. Your helpis
appreciated.

Acknowledgements

Theideas and understanding in this book have come from many sources: friends like Chuck
Allison, Andrea Provaglio, Dan Saks, Scott Meyers, Charles Petzold, and Michael Wilk;
pioneers of the language like Bjarne Stroustrup, Andrew Koenig, and Rob Murray; members
of the C++ Standards Committee like Nathan Myers (who was particularly helpful and
generous with hisinsights), Tom Plum, Reg Charney, Tom Penello, Sam Druker, and Uwe
Steinmueller; people who have spoken in my C++ track at the Software Development
Conference; and very often studentsin my seminars, who ask the questions | need to hear in
order to make the material clearer.

| have been presenting this material on tours produced by Miller Freeman Inc. with my friend
Richard Hale Shaw. Richard’ s insights and support have been very helpful (and Kim's, too).
Thanks also to KoAnn Vikoren, Eric Faurot, Jennifer Jessup, Nicole Freeman, Barbara
Hanscome, Regina Ridley, Alex Dunne, and the rest of the cast and crew at MFI.

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer, who used to play with rub-on lettersin junior high school
while he awaited the invention of computers and desktop publishing. However, | produced the
camera-ready pages myself, so the typesetting errors are mine. Microsoft® Word for Windows
97 was used to write the book and to create camera-ready pages. The body typefaceis[Times
for the electronic distribution] and the headlines are in [Times for the electronic distribution].

A special thanksto all my teachers, and all my students (who are my teachers as well).

Personal thanks to my friends Gen Kiyooka and Kraig Brockschmidt. The supporting cast of
friends includes, but is not limited to: Zack Urlocker, Andrew Binstock, Neil Rubenking,
Steve Sinofsky, JD Hildebrandt, Brian McElhinney, Brinkley Barr, Larry O’ Brien, Bill Gates
at Midnight Engineering Magazine, Larry Constantine & Lucy Lockwood, Tom Keffer, Greg
Perry, Dan Putterman, Christi Westphal, Gene Wang, Dave Mayer, David Intersimone, Claire
Sawyers, Claire Jones, The Italians (Andrea Provaglio, Laura Fallai, Marco Cantu, Corrado,
Ilsa and Christina Giustozzi), Chris & Laura Strand, The Almquists, Brad Jerbic, Marilyn
Cvitanic, The Mabrys, The Haflingers, The Pollocks, Peter Vinci, The Robbins Families, The
Moelter Families (& the McMillans), The Wilks, Dave Stoner, Laurie Adams, The Penneys,

Preface 21

The Cranstons, Larry Fogg, Mike & Karen Sequeira, Gary Entsminger & Allison Brody,
Chester Andersen, Joe Lordi, Dave & Brenda Bartlett, The Rentschlers, The Sudeks, Lynn &
Todd, and their families. And of course, Mom & Dad.

Preface 22

Part 1: The
Standard C++
Library

Standard C++ not only incorporates all the Standard C
libraries, with small additions and changes to support type
safety, it also adds libraries of itsown. These libraries are far
more powerful than those in Standard C; the leverage you
get from them is analogous to the leverage you get from
changing from C to C++.

This section of the book gives you an in-depth introduction to the most important portions of
the Standard C++ library.

The most complete and al so the most obscure reference to the full librariesis the Standard
itself. Somewhat more readable (and yet still a self-described “expert’s guide”) is Bjarne
Stroustrup’s 3" Edition of The C++ Programming Language (Addison-Wesley, 1997).
Another valuable reference is the 3" edition of C++ Primer, by Lippman & Lajoie. The goal
of the chapters in this book that cover the librariesisto provide you with an encyclopedia of
descriptions and examples so you' [l have a good starting point for solving any problem that
requires the use of the Standard libraries. However, there are some techniques and topics that
are used rarely enough that they are not covered here, so if you can't find it in these chapters
you should reach for the other two books; this book is not intended to replace those but rather
to complement them. In particular, | hope that after going through the material in the
following chapters you'll have a much easier time understanding those books.

Y ou will notice that this section does not contain exhaustive documentation describing every
function and classin the Standard C++ library. I've left the full descriptionsto others; in
particular there a particularly good on-line sources of standard library documentation in

HTML format that you can keep resident on your computer and view with a Web browser
whenever you need to look something up. Thisis PJ Plauger’ s Dinkumware C/C++ Library
reference at http://www.dinkumware.com. Y ou can view this on-line, and purchase it for local

23

viewing. It contains complete reference pages for the both the C and C++ libraries (soit’s
good to use for all your Standard C/C++ programming questions). | am particularly fond of
electronic documentation not only because you can aways have it with you, but also because
you can do an electronic search for what you' re seeking.

When you're actively programming, these resources should adequately satisfy your reference
needs (and you can use them to look up anything in this chapter that isn't clear to you).
Appendix XX lists additional references.

Library overview

[[Still needswork 1]

The first chapter in this section introduces the Standard C++ string class, which is a powerful
tool that simplifies most of the text processing chores you might have to do. The string class
may be the most thorough string manipulation tool you've ever seen. Chances are, anything
you' ve done to character strings with lines of code in C can be done with a member function
call in the string class, including append(), assign(), insert(), remove(), replace(),
resize(), copy(), find(), rfind(), find_first_of(), find_last_of(), find_first_not_of(),
find_last_not_of(), substr(), and compare(). The operators =, +=, and [] are also
overloaded to perform the intuitive operations. In addition, there's a“wide” wstring class
designed to support international character sets. Both string and wstring (declared in
<string>, not to be confused with C's <string.h>, which is, in strict C++, <cstring>) are
created from a common template class called basic_string. Note that the string classes are
seamlessly integrated with iostreams, virtually eliminating the need for you to ever use
strstream.

The next chapter coverstheiostream library.

L anguage Support. Elements inherent to the language itself, like implementation limitsin
<climits> and <cfloat>; dynamic memory declarationsin <new> like bad_alloc (the
exception thrown when you' re out of memory) and set_new_handler; the <typeinfo> header
for RTTI and the <exception> header that declares the terminate() and unexpected()
functions.

Diagnostics Library. Components C++ programs can use to detect and report errors. The
<exception> header declares the standard exception classes and <cassert> declares the same
thing as C'sassert.h.

General Utilities Library. These components are used by other parts of the Standard C++
library, but you can also use them in your own programs. Included are templatized versions of
operators |=, >, <=, and >= (to prevent redundant definitions), a pair template classwith a
tuple-making template function, a set of function objects for support of the STL, and storage
allocation functions for use with the STL so you can easily modify the storage allocation
mechanism.

Chapter 14: Templates & Container Classes
24

Localization Library. This allows you to localize stringsin your program to adapt to usage
in different countries, including money, numbers, date, time, and so on.

ContainersLibrary. Thisincludes the Standard Template Library (described in the next
section of this appendix) and also the bits and bit_string classesin <bits> and <bitstring>,
respectively. Both bits and bit_string are more complete implementations of the bitvector
concept introduced in Chapter XX. The bits template creates a fixed-sized array of bits that
can be manipulated with all the bitwise operators, as well as member functions like set(),
reset(), count(), length(), test(), any(), and none(). There are also conversion operators
to_ushort(), to_ulong(), and to_string().

The bit_string classis, by contrast, a dynamically sized array of bits, with similar operations
to bits, but also with additional operations that make it act somewhat like astring. There'sa
fundamental difference in bit weighting: With bits, the right-most bit (bit zero) is the |east
significant bit, but with bit_string, the right-most bit is the most significant bit. There are no
conversions between bits and bit_string. You'll use bits for a space-efficient set of on-off
flags and bit_string for manipulating arrays of binary values (like pixels).

IteratorsLibrary. Includesiterators that are tools for the STL (described in the next section
of this appendix), streams, and stream buffers.

AlgorithmsLibrary. These are the template functions that perform operations on the STL
containers using iterators. The algorithms include: adjacent_find, prev_per mutation,
binary_search, push_heap, copy, random_shuffle, copy_backward, remove, count,
remove_copy, count_if, remove_copy_if, equal, remove_if, equal_range, replace, fill,
replace _copy, fill_n, replace copy _if, find, replace_if, find_if, reverse, for_each,
reverse_copy, gener ate, rotate, generate n, rotate _copy, includes, search,
inplace_merge, set_difference, lexicographical_compare, set_inter section, lower_bound,
set_symmetric_difference, make_heap, set_union, max, sort, max_element, sort_heap,
mer ge, stable_partition, min, stable_sort, min_element, swap, mismatch, swap_ranges,
next_permutation, transform, nth_element, unique, partial_sort, unique_copy,
partial_sort_copy, upper_bound, and partition.

NumericsLibrary. The goal of thislibrary isto allow the compiler implementer to take
advantage of the architecture of the underlying machine when used for numerical operations.
Thisway, creators of higher level numerical libraries can write to the numerics library and
produce efficient algorithms without having to customize to every possible machine. The
numerics library also includes the complex number class (which appeared in the first version
of C++ asan example, and has become an expected part of the library) in float, double, and
long double forms.

Chapter 14: Templates & Container Classes
25

1: Strings

40ne of the biggest time-wastersin C is character arrays.
keeping track of the difference between static quoted strings
and arrays created on the stack and the heap, and the fact
that sometimes you' re passing around a char* and
sometimes you must copy the whole array.

(Thisisthe general problem of shallow copy vs. deep copy.) Especially because string
manipulation is so common, character arrays are a great source of misunderstandings and
bugs.

Despite this, creating string classes remained a common exercise for beginning C++
programmers for many years. The Standard C++ library string class solves the problem of
character array manipulation once and for all, keeping track of memory even during
assignments and copy-constructions. Y ou simply don't need to think about it.

This chapter examines the Standard C++ string class, beginning with alook at what
congtitutes a C++ string and how the C++ version differs from atraditional C character array.
You'll learn about operations and manipulations using string objects, and see how C++
strings accommodate variation in character sets and string data conversion.

Handling text is perhaps one of the oldest of all programming applications, so it's not
surprising that the C++ string draws heavily on the ideas and terminology that have long been
used for this purpose in C and other languages. As you begin to acquaint yourself with C++
strings this fact should be reassuring, in the respect that no matter what programming idiom
you choosg, there are really only about three things you can do with a string: create or modify
the sequence of characters stored in the string, detect the presence or absence of elements
within the string, and translate between various schemes for representing string characters.

You'll see how each of these jobs is accomplished using C++ string objects.

What'sn astring

In C, astringissimply an array of characters that always includes a binary zero (often called
the null terminator) asitsfina array element. There are two significant differences between

4 Much of the material in this chapter was originally created by Nancy Nicolaisen

27

C++ strings and their C progenitors. First, C++ string objects associate the array of
characters which constitute the string with methods useful for managing and operating on it.
A string also contains certain “housekeeping” information about the size and storage location
of itsdata. Specifically, a C++ string object knowsiits starting location in memory, its
content, its length in characters, and the length in charactersto which it can grow before the
string object must resize itsinternal data buffer. This gives rise to the second big difference
between C char arrays and C++ strings. C++ strings do not include a null terminator, nor do
the C++ string handling member functions rely on the existence of a null terminator to
perform their jobs. C++ strings greatly reduce the likelihood of making three of the most
common and destructive C programming errors: overwriting array bounds, trying to access
arrays through uninitialized or incorrectly valued pointers, and leaving pointers “dangling”
after an array ceases to occupy the storage that was once allocated to it.

The exact implementation of memory layout for the string classis not defined by the C++
Standard. This architecture is intended to be flexible enough to allow differing
implementations by compiler vendors, yet guarantee predictable behavior for users. In
particular, the exact conditions under which storage is allocated to hold data for a string object
are not defined. String allocation rules were formulated to allow but not require a reference-
counted implementation, but whether or not the implementation uses reference counting, the
semantics must be the same. To put this abit differently, in C, every char array occupies a
unique physical region of memory. In C++, individual string objects may or may not occupy
unique physical regions of memory, but if reference counting is used to avoid storing
duplicate copies of data, the individual objects must look and act as though they do
exclusively own unique regions of storage. For example:

/1: CO1l:StringStorage. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {
string s1("12345");
/1 Set the iterator indicate the first el ement
string::iterator it = sl.begin();
/1 This may copy the first to the second or
/1 use reference counting to sinulate a copy
string s2 = si;
/1 Either way, this statenment nmay ONLY nodify first
*it ='0";
cout << "sl " << sl << endl
cout << "s2 " << s2 << endl
Y I~

Reference counting may serve to make an implementation more memory efficient, but it is
transparent to users of the string class.

Chapter 14: Templates & Container Classes
28

Creating and initializing C++ strings
Creating and initializing stringsis a straightforward proposition, and fairly flexible aswell. In
the example shown below, the first string, imBlank, is declared but contains no initial value.
Unlike a C char array, which would contain arandom and meaningless bit pattern until
initialization, imBlank does contain meaningful information. This string object has been
initialized to hold “no characters,” and can properly report its O length and absence of data
elements through the use of class member functions.

The next string, heyM om, isinitialized by the literal argument "Where are my socks?". This
form of initialization uses a quoted character array as a parameter to the string constructor.
By contrast, standar dReply is simply initialized with an assignment. The last string of the
group, useT hisOneAgain, isinitialized using an existing C++ string object. Put another way,
this example illustrates that string objects let you:

» Create an empty string and defer initializing it with character data

* Initializeastring by passing aliteral, quoted character array as an argument to the
constructor

» Initidlizeastring using ‘="
* Useonestring toinitialize another

//: COl:Small String.cpp
#i ncl ude <string>
usi ng namespace std;

int main() {
string inBl ank;
string heyMom("Were are nmy socks?");
string standardReply = "Beaned into deep "
"space on w de angl e di spersion?”;
string useThi sOneAgai n(st andar dRepl y) ;
Y I~

These are the simplest forms of string initialization, but there are other variations which offer
more flexibility and control. You can :

* Useaportion of either a C char array or aC++ string
* Combine different sources of initialization data using operator +
* Usethestring object’s substr () member function to create a substring

//: CO1l:Small String2.cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng namespace std;

Chapter 14: Templates & Container Classes
29

int main() {

string sl
("What is the sound of one cl am nappi ng?");
string s2
("Anyt hing worth doing is worth overdoing.");

string s3("l saw Elvis in a UFQO");
/1l Copy the first 8 chars
string s4(sl, 0, 8);
/1 Copy 6 chars fromthe middle of the source
string s5(s2, 15, 6);
/1 Copy frommddle to end
string s6(s3, 6, 15);
/1 Copy all sorts of stuff
string quoteMe = s4 + "that" +
/1 substr() copies 10 chars at elenent 20
sl.substr (20, 10) + s5 +
/1 substr() copies up to either 100 char
/1 or eos starting at elenment 5
"with" + s3.substr(5, 100) +
/1 OK to copy a single char this way
sl.substr (37, 1);
cout << quoteMe << endl

Y I~

The string member function substr () takes a starting position as its first argument and the
number of charactersto select as the second argument. Both of these arguments have default
values and if you say substr (') with an empty argument list you produce a copy of the entire
string, so thisis aconvenient way to duplicate astring.

Here' swhat the string quoteM e contains after the initialization shown above :
"What is that one clamdoing with Elvis in a UFQ ?"

Notice the final line of example above. C++ alows string initialization techniques to be
mixed in a single statement, a flexible and convenient feature. Also note that the last
initializer copiesjust one character from the source string.

Another slightly more subtle initialization technique involves the use of the string iterators
string.begin() and string.end(). Thistreats astring like a container object (which you've
seen primarily in the form of vector so far in this book — you' [l see many more containers
soon) which hasiteratorsindicating the start and end of the “container.” Thisway you can
hand a string constructor two iterators and it will copy from one to the other into the new
string:

| //: C01:Stringlterators.cpp

Chapter 14: Templates & Container Classes
30

#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng namespace std;

int main() {
string source("xxx");
string s(source.begin(), source.end());
cout << s << endl

Y I~

The iterators are not restricted to begin() and end(), so you can choose a subset of characters
from the source string.

Initialization limitations
C++ strings may not be initialized with single characters or with ASCI| or other integer
values.

//: COl: UhCh. cpp
#i ncl ude <string>
usi ng namespace std;

int main() {
/1 Error: no single char inits
/1! string nothingDoingl('a');
/1 Error: no integer inits
/1! string nothingDoi ng2(0x37);
Y I~

Thisistrue both for initialization by assignment and by copy constructor.

Operating on strings

If you've programmed in C, you are accustomed to the convenience of alarge family of
functions for writing, searching, rearranging, and copying char arrays. However, there are
two unfortunate aspects of the Standard C library functions for handling char arrays. First,
there are three loosely organized families of them: the “plain” group, the group that

manipul ates the characters without respect to case, and the ones which require you to supply a
count of the number of charactersto be considered in the operation at hand. The roster of
function names in the C char array handling library literally runs to several pages, and though
the kind and number of arguments to the functions are somewhat consistent within each of the
three groups, to use them properly you must be very attentive to details of function naming
and parameter passing.

Chapter 14: Templates & Container Classes
31

The second inherent trap of the standard C char array toolsisthat they al rely explicitly on
the assumption that the character array includes a null terminator. If by oversight or error the
null is omitted or overwritten, there’ s very little to keep the C char array handling functions
from manipulating the memory beyond the limits of the allocated space, sometimes with
disastrous results.

C++ provides avast improvement in the convenience and safety of string objects. For
purposes of actual string handling operations, there are a modest two or three dozen member
function names. It’s worth your while to become acquainted with these. Each function is
overloaded, so you don't have to learn a new string member function name simply because of
small differencesin their parameters.

Appending, inserting and concatenating
strings

One of the most valuable and convenient aspects of C++ stringsis that they grow as needed,
without intervention on the part of the programmer. Not only does this make string handling
code inherently more trustworthy, it also amost entirely eliminates a tedious “housekeeping”
chore — keeping track of the bounds of the storage in which your strings live. For example, if
you create a string object and initialize it with a string of 50 copies of ‘X', and later storein it
50 copies of “Zowie”, the object itself will reall ocate sufficient storage to accommodate the
growth of the data. Perhaps nowhere is this property more appreciated than when the strings
manipulated in your code change in size, and you don’t know how big the changeiis.
Appending, concatenating, and inserting strings often give rise to this circumstance, but the
string member functions append() and insert() transparently reall ocate storage when a string
grows.

//: CO1l:StrSize.cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
string bigNews("l saw Elvis in a UFO. ");
cout << bigNews << endl;
/1 How rmuch data have we actually got?
cout << "Size = " << bigNews.size() << endl;
/1 How rmuch can we store w thout reallocating
cout << "Capacity ="
<< bi gNews. capacity() << endl;
/1 Insert this string in bigNews inmediately
/1 before bigNews[1]
bi gNews. i nsert (1, " thought I ");
cout << bigNews << endl;

Chapter 14: Templates & Container Classes
32

cout << "Size = " << bigNews.size() << endl;
cout << "Capacity ="

<< bi gNews. capacity() << endl;
/1 Make sure that there will be this nuch space
bi gNews. r eser ve(500) ;
/1 Add this to the end of the string
bi gNews. append("1' ve been working too hard.");
cout << higNews << endl;
cout << "Size = " << bigNews.size() << endl;
cout << "Capacity ="

<< bhi gNews. capacity() << endl;

Y I~

Here is the output:

| saw Elvis in a UFO

Size = 21

Capacity = 31

| thought | saw Elvis in a UFQ

Size = 32

Capacity = 63

| thought | saw Elvis in a UFO. 1've been
wor ki ng too hard.

Size = 66

Capacity = 511

This example demonstrates that even though you can safely relinquish much of the
responsibility for allocating and managing the memory your strings occupy, C++ strings
provide you with several tools to monitor and manage their size. The size(), resize(),
capacity(), and reserve() member functions can be very useful when its necessary to work
back and forth between data contained in C++ style strings and traditional null terminated C
char arrays. Note the ease with which we changed the size of the storage allocated to the
string.

The exact fashion in which the string member functions will allocate space for your datais
dependent on the implementation of the library. When one implementation was tested with
the example above, it appeared that reall ocations occurred on even word boundaries, with one
byte held back. The architects of the string class have endeavored to make it possible to mix
the use of C char arrays and C++ string objects, so it islikely that figures reported by

Str Size.cpp for capacity reflect that in this particular implementation, abyteis set aside to
easily accommodate the insertion of anull terminator.

Chapter 14: Templates & Container Classes
33

Replacing string characters

insert() is particularly nice because it absolves you of making sure the insertion of characters
in astring won't overrun the storage space or overwrite the charactersimmediately following
the insertion point. Space grows and existing characters politely move over to accommodate
the new elements. Sometimes, however, this might not be what you want to happen. If the
datain string needs to retain the ordering of the original characters relative to one another or
must be a specific constant size, use the replace() function to overwrite a particular sequence
of characters with another group of characters. There are quite a number of overloaded
versions of replace(), but the simplest one takes three arguments: an integer telling where to
start in the string, an integer telling how many characters to eliminate from the original string,
and the replacement string (which can be a different number of characters than the eliminated
guantity). Here's avery simple example:

//: CO1l: StringRepl ace. cpp

/1 Sinple find-and-replace in strings
#i ncl ude <string>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
string s("A piece of text");
string tag("tag");
s.insert(8, tag + ' ');
cout << s << endl;
int start = s.find(tag);

cout << "start =" << start << endl;

cout << "size = " << tag.size() << endl;
s.replace(start, tag.size(), "hello there");
cout << s << endl;

Y 110~

Thetag isfirst inserted into s (notice that the insert happens before the value indicating the
insert point, and that an extra space was added after tag), then it is found and replaced.

Y ou should actually check to seeif you' ve found anything before you perform areplace().
The above example replaces with a char*, but there's an overloaded version that replaces
with astring. Here's a more complete demonstration replace()

//: COl: Repl ace. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

voi d repl aceChars(string& nodifyMe,

Chapter 14: Templates & Container Classes
34

string findMe, string newChars){
/1 Look in nodifyMe for the "find string"
/1 starting at position O

int i = nodifyMe.find(findMe, 0);
/1 Did we find the string to replace?
if(i !'= string::npos)

/1 Replace the find string with newChars
nodi f yMe. repl ace(i, newChars. si ze(), newChars) ;

}

int main() {
string bigNews =
"I thought | saw Elvis in a UFQ
"I have been working too hard.";
string replacenent("w g");
string findMe("UFQO");
/1 Find "UFO" in bigNews and overwite it:
repl aceChar s(bi gNews, findMe, replacenent);
cout << higNews << endl;
Y I~

Now the last line of output from replace.cpp looks like this:

| thought | saw Elvis in a wig. | have been
wor ki ng too hard.

If replace doesn't find the search string, it returns npos. nposis a static constant member of
thebasic_string class.

Unlikeinsert(), replace() won't grow the string’ s storage space if you copy new characters
into the middle of an existing series of array elements. However, it will grow the storage
space if you make a “replacement” that writes beyond the end of an existing array. Here's an
example:

/1: CO1l: Repl aceAndG ow. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string bigNews("l saw Elvis in a UFQ
"I have been working too hard.");
string replacenent ("w g");
/1 The first arg says "replace chars
/1 beyond the end of the existing string":
bi gNews. r epl ace(bi gNews. si ze(),

Chapter 14: Templates & Container Classes
35

repl acenent.size(), replacenent);
cout << higNews << endl;
Y I~

The call to replace() begins “replacing” beyond the end of the existing array. The output
looks like this:

| saw Elvis in a UFO | have
been working too hard.w g

Notice that replace() expands the array to accommodate the growth of the string due to
“replacement” beyond the bounds of the existing array.

Simple character replacement using the STL
replace() algorithm

Y ou may have been hunting through this chapter trying to do something relatively simple like
replace al the instances of one character with a different character. Upon finding the above
section on replacing, you thought you found the answer but then you started seeing groups of
characters and counts and other things that looked a bit too complex. Doesn't string have a
way to just replace one character with another everywhere?

The string class by itself doesn’t solve al possible problems. The remainder are relegated to
the STL algorithms, because the string class can look just like an STL container (the STL
algorithms work with anything that looks like an STL container). All the STL algorithms
work on a*“range” of elements within a container. Usually that rangeisjust “from the
beginning of the container to the end.” A string object looks like a container of characters: to
get the beginning of the range you use string::begin() and to get the end of the range you use
string::end(). The following example shows the use of the STL replace() algorithm to
replace al the instances of ‘X’ with *Y’:

/1: CO1: StringCharRepl ace. cpp
#i ncl ude <string>

#i ncl ude <al gorithne

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {
string s("aaaXaaaXXaaXXXaXXXXaaa") ;
cout << s << endl;
repl ace(s. begin(), s.end(), "X, 'Y);
cout << s << endl;

Y I~

Notice that thisreplace() is not called as a member function of string. Also, unlike the
string::replace() functions which only perform one replacement, the STL replaceis
replacing all instances of one character with another.

Chapter 14: Templates & Container Classes
36

The STL replace() agorithm only works with single objects (in this case, char objects), and
will not perform replacements of quoted char arrays or of string objects.

Since astring looks like an STL container, there are a number of other STL algorithms that
can be applied to it, which may solve other problems you have that are not directly addressed
by the string member functions. See Chapter XX for more information on the STL
algorithms.

Concatenation using non-member
overloaded operators

One of the most delightful discoveries awaiting a C programmer learning about C++ string
handling is how simply strings can be combined and appended using operator + and

oper ator +=. These operators make combining strings syntactically equivalent to adding
numeric data.

//: CO1l: AddStri ngs. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
string s1("This ");
string s2("That ");
string s3("The other ");
/1 operator+ concatenates strings
sl = sl + s2;
cout << sl << endl;
/1 Another way to concatenates strings
sl += s3;
cout << sl << endl;
/1 You can index the string on the right
sl += s3 + s3[4] + "oh lala";
cout << sl << endl;
Y I~

he output looks like this:

Thi s

Thi s That

Thi s That The ot her

This That The other ooh lala

—

Chapter 14: Templates & Container Classes
37

oper ator + and oper ator += are a very flexible and convenient means of combining string
data. On the right hand side of the statement, you can use almost any type that evaluatesto a

group of one or more characters.

Searching in strings

The find family of string member functions allows you to locate a character or group of
characters within a given string. Here are the members of the find family and their general

usage:

string find member function

What/how it finds

find()

Searches a string for a specified character or
group of characters and returns the starting
position of the first occurrence found or npos
if no matchisfound. (nposisaconst of -1
and indicates that a search failed.)

find_first_of()

Searches atarget string and returns the
position of the first match of any character in
a specified group. If no match isfound, it
returns npos.

find_last_of()

Searches atarget string and returns the
position of the last match of any character in
a specified group. If no match isfound, it
returns npos.

find_first_not_of()

Searches atarget string and returns the
position of the first element that doesn’t
match any character in a specified group. If
no such element is found, it returns npos.

find_last_not_of()

Searches atarget string and returns the
position of the element with the largest
subscript that doesn’t match of any character
in aspecified group. If no such element is
found, it returns npos.

rfind()

Searches a string from end to beginning for a
specified character or group of characters and
returns the starting position of the match if
oneisfound. If no match isfound, it returns
npos.

String searching member functions and their general uses

Chapter 14: Templates & Container Classes

38

The simplest use of find() searches for one or more charactersin astring. This overloaded
version of find() takes a parameter that specifies the character(s) for which to search, and
optionally one that tells it where in the string to begin searching for the occurrence of a
substring. (The default position at which to begin searching is 0.) By setting the call to find
inside aloop, you can easily move through a string, repeating a search in order to find all of
the occurrences of a given character or group of characters within the string.

Notice that we define the string object sieveChar s using a constructor idiom which sets the
initial size of the character array and writesthe value ‘P’ to each of its member.

/1: COl:Sieve.cpp
#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
/1l Create a 50 char string and set each
/1 element to 'P for Prine
string sieveChars(50, 'P);
/1 By definition neither O nor 1 is prinme.
/1 Change these elenments to "N' for Not Prinme
sieveChars.replace(0, 2, "NN');
/1 Wal k through the array:
for(int i = 2;
i <= (sieveChars.size() / 2) - 1; i++)
/1 Find all the factors:
for(int factor = 2;
factor * i < sieveChars.size();factor++)
sieveChars[factor * i] ="'N;
cout << "Prime:" << endl
/1 Return the index of the first 'P elenent:

int j = sieveChars.find('P);
/1 While not at the end of the string:
while(j != sieveChars.npos) {

/1 1f the elenent is P, the index is a prine
cout << j << " "y
/! Move past the last prine
j ++;
/1 Find the next prime
j = sieveChars.find('P, j);
}
cout << "\'n Not prine:" << endl;
/1 Find the first el enent value not equal P:

Chapter 14: Templates & Container Classes
39

j = sieveChars.find first_not_of (' P);

whil e(j != sieveChars. npos) {
cout << j << " ",
j++
j = sieveChars.find first not of ("P, j);
}
Yy I~
The output from Sieve.cpp looks like this:
Prime:
2357 11 13 17 19 23 29 31 37 41 43 47
Not pri me:

014689 10 12 14 15 16 18 20 21 22
24 25 26 27 28 30 32 33 34 35 36 38 39
40 42 44 45 46 48 49

find() alows you to walk forward through a string, detecting multiple occurrences of a
character or group of characters, while find_first_not_of() allows you to test for the absence
of acharacter or group.

The find member is also useful for detecting the occurrence of a sequence of charactersin a
string:

//: CO1:Find.cpp

/1 Find a group of characters in a string
#i ncl ude <string>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
string chooseOne("Eenie, neenie, mney, no");
int i = chooseOne.find("een");
while(i !'= string::npos) {
cout << i << endl;
i ++;
i = chooseOne.find("een", i);
}
Y I~

Find.cpp produces a single line of output :
| 8
Thistellsusthat thefirst ‘€’ of the search group “een” was found in the word “meenie,” and

is the eighth element in the string. Notice that find passed over the “Een” group of characters
in the word “Eeni€”. The find member function performs a case sensitive search.

Chapter 14: Templates & Container Classes
40

There are no functionsin the string class to change the case of a string, but these functions
can be easily created using the Standard C library functions toupper () and tolower (), which
change the case of one character at atime. A few small changes will make Find.cpp perform
a case insensitive search:

//: CO1l: NewFi nd. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

/1 Make an uppercase copy of s:
string upperCase(string& s) {

char* buf = new char[s.length()];

s.copy(buf, s.length());

for(int i = 0; i < s.length(); i++)

buf [i] = toupper(buf[i]);

string r(buf, s.length());

del ete buf;

return r;

}

/1 Make a | owercase copy of s:
string | owerCase(string& s) {

char* buf = new char[s.length()];

s.copy(buf, s.length());

for(int i =0; i <s.length(); i++)

buf[i] = tol ower(buf[i]);

string r(buf, s.length());

del ete buf;

return r;

}

int main() {

string chooseOne("Eenie, neenie, mney, no");
cout << chooseOne << endl;
cout << upperCase(chooseOne) << endl;
cout << | ower Case(chooseOne) << endl;
/] Case sensitive search
int i = chooseOne.find("een");
while(i !'= string::npos) {

cout << i << endl;

i ++;

i = chooseOne.find("een", i);

Chapter 14: Templates & Container Classes
41

/1 Search | owercase:

string | case = | ower Case(chooseOne);
cout << |case << endl;

i = lcase.find("een");

while(i != Icase.npos) {
cout << i << endl;
i ++;
i = lcase.find("een", i);
}

/1 Search uppercase:

string ucase = upper Case(chooseOne);
cout << ucase << endl;

i = ucase.find("EEN");

whil e(i != ucase. npos) {
cout << i << endl;
i ++;
i = ucase.find("EEN', i);
}
Y I~

Both the upper Case() and lower Case() functions follow the same form: they allocate
storage to hold the data in the argument string, copy the data and change the case. Then they
create anew string with the new data, release the buffer and return the result string. The
c_str () function cannot be used to produce a pointer to directly manipulate the datain the
string because ¢_str (') returns a pointer to const. That is, you're not alowed to manipul ate
string data with a pointer, only with member functions. If you need to use the more primitive
char array manipulation, you should use the technique shown above.

The output looks like this:

Eeni e, neenie, mney, no
EENIE, MEENIE, M NEY, MO
eeni e, neenie, niney, no
8
eeni e, neenie, niney, no
0
8
EENIE, MEENIE, M NEY, MO
0
8

The case insensitive searches found both occurrences on the “een” group.

NewFind.cpp isn't the best solution to the case sensitivity problem, so we'll revisit it when
we examine string comparisons.

Chapter 14: Templates & Container Classes
42

Finding in reverse
Sometimes it’s necessary to search through a string from end to beginning, if you need to find
thedatain “lastin/ first out “ order. The string member function rfind() handlesthisjob.

/1: COl: Rparse. cpp

/! Reverse the order of words in a string
#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng nanmespace std;

int main() {
/1 The ';' characters will be delimters
string s("now. ;sense; make;to; going;is; This");
cout << s << endl
/1 To store the words:
vector<string> strings;
/1 The last element of the string:
int last = s.size();
/1 The begi nning of the current word:
int current = s.rfind(';");
/1 Wal k backward through the string:
whil e(current != string::npos){
/1 Push each word into the vector
/1 Current is increnented before copying to
/1 avoid copying the delimter
strings. push_back(
s.substr(++current,last - current));
/1 Back over the delimter we just found,
/1 and set last to the end of the next word
current -= 2;
[ast = current;
/1 Find the next deliniter
current = s.rfind(';', current);
}
/1 Pick up the first word - it's not
/1 preceded by a delinmter
strings. push_back(s.substr(0, last - current));
[l Print themin the new order:

for(int j =0; j < strings.size(); j++)
cout << strings[j] << " ";
Y I~

Chapter 14: Templates & Container Classes
43

Here's how the output from Rpar se.cpp looks:

now. ; sense; nake;to; going;is; This
This is going to nake sense now.

rfind() backs through the string looking for tokens, reporting the array index of matching

charactersor string::nposif it is unsuccessful.

Finding first/last of a set

Thefind_first_of() and find_last_of() member functions can be conveniently put to work to
create alittle utility that will strip whitespace characters off of both ends of a string. Notice it

doesn’t touch the original string, but instead returns a new string:

[1: Ql:trimh
#i f ndef TRIMH
#define TRIMH
#i ncl ude <string>
/1 General tool to strip spaces from both ends:
inline std::string trimconst std::string& s) {
if(s.length() == 0)
return s;
int b =s.find first_not_of (" \t");
int e =s.find_last_not_of (" \t");
if(b ==-1) // No non-spaces
return ""
return std::string(s, b, e - b + 1);
}
#endif // TRIMH///:~

The first test checks for an empty string; in that case no tests are made and a copy is returned.
Notice that once the end points are found, the string constructor is used to build a new string
from the old one, giving the starting count and the length. This form also utilizes the “return
value optimization” (see the index for more details).

Testing such a general -purpose tool needs to be thorough:

//: COL1l: Triniest.cpp
#include "trimh"

#i ncl ude <i ostreanp

usi ng nanmespace std;

string s[] = {

" \'t abcdefghijklmop \t ",
"abcdef ghij kl mop \t ",
" \'t abcdef ghij kl mop",

Chapter 14: Templates & Container Classes

44

"a", "ab", "abc", "a b c",
"\t abc\t ", "\t alt b\t c\t ",
"""/l Must also test the empty string

}s

void test(string s) {
cout << "[" << trims) << "]" << endl;

}

int main() {
for(int i =0; i < sizeof s/ sizeof *s; i++)
test(s[i]);
Y I~
Inthe array of string s, you can see that the character arrays are automatically converted to

string objects. This array provides casesto check the removal of spaces and tabs from both
ends, as well as ensuring that spaces and tabs do not get removed from the middle of astring.

Removing characters from strings

My word processor/page layout program (Microsoft Word) will save adocument in HTML,
but it doesn't recognize that the code listings in this book should be tagged with the HTML
“preformatted” tag (<PRE>), and it puts paragraph marks (<P> and </P>) around every listing
line. This means that all the indentation in the code listingsis lost. In addition, Word saves
HTML with reduced font sizes for body text, which makesit hard to read.

To convert the book to HTML form®, then, the original output must be reprocessed, watching
for the tags that mark the start and end of code listings, inserting the <PRE> and </PRE> tags
at the appropriate places, removing all the <P> and </P> tags within the listings, and adjusting
the font sizes. Removal is accomplished with the erase() member function, but you must
correctly determine the starting and ending points of the substring you wish to erase. Here's
the program that reprocesses the generated HTML file:

//: COl1l: ReprocessHTM.. cpp

/1 Take Word's htm output and fix up
/1 the code listings and htm tags
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

usi ng nanmespace std;

5| subsequently found better tools to accomplish this task, but the program is still interesting.

Chapter 14: Templates & Container Classes
45

/1 Produce a new string which is the original
/1 string with the htm paragraph break nmarks
/1 stripped off:
string stripPBreaks(string s) {
int br;
while((br = s.find("<P>")) != string::npos)
s.erase(br, strlen("<P>"));
while((br = s.find("</P>")) !'= string::npos)
s.erase(br, strlen("</P>"));
return s;

}

/1 After the beginning of a code listing is
/1 detected, this function cleans up the listing
/1 until the end marker is found. The first line
/1 of the listing is passed in by the caller
/1 which detects the start marker in the |ine.
voi d fixupCodelLi sting(istream& in,
ostream& out, string& line, int tag) {
out << line.substr(0, tag)
<< "<PRE>" // Means "preformatted" in htn
<< stripPBreaks(line.substr(tag)) << endl

string s;
whil e(getline(in, s)) {
int endtag = s.find("/""/""/"":~");
if(endtag != string::npos) {
endtag += strlen("/""/""/"":~");

string before = s.substr(0, endtag);
string after = s.substr(endtag);
out << stripPBreaks(before) << "</ PRE>"
<< after << endl;

return;

}

out << stripPBreaks(s) << endl;

}
}

string renoval s[] = {
"",
"",
"",
"",

Chapter 14: Templates & Container Classes
46

"",
"SIl ZE=1", // Elimnate all other '1" & '2' size
" Sl ZE=2",
b .
const int rnmez =
si zeof (renoval s)/ si zeof (*renoval s) ;

int main(int argc, char* argv[]) {
requi reArgs(argc, 2);
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (argv[2]);
string |line;
whil e(getline(in, line)) {
/1 The "Body" tag only appears once:
if(line.find("<BODY") != string::npos) {
out << "<BODY BGCOLOR=\"#FFFFFF\ "
" TEXT=\"#000000\ ">" << endl
continue; // Get next line
}
/1 Elimnate each of the renovals strings:
for(int i =0; i <rmez; i++) {
int find = 1line.find(renovals[i]);
if(find !'= string::npos)
line.erase(find, renmoval s[i].size());
}
int tagl line.find("/""/"":");
int tag2 line.find("/""*"":");
if(tagl !'= string::npos)
fi xupCodeLi sting(in, out, line, tagl);
el se if(tag2 != string::npos)
fi xupCodeLi sting(in, out, line, tag2);
el se
out << line << endl

}
Y 11~

Notice the lines that detect the start and end listing tags by indicating them with each
character in quotes. These tags are treated in a special way by thelogic in the
Extractcode.cpp tool for extracting code listings. To present the code for the tool in the text
of the book, the tag sequence itself must not occur in the listing. This was accomplished by
taking advantage of a C++ preprocessor feature that causes text strings delimited by adjacent
pairs of double quotes to be merged into a single string during the preprocessor pass of the
build

Chapter 14: Templates & Container Classes
47

| int tagl = line. find("/""/"":");
The effect of the sequence of char arraysis to produce the starting tag for code listings.

Stripping HTML tags

Sometimes it’s useful to take an HTML file and strip its tags so you have something
approximating the text that would be displayed in the Web browser, only as an ASCI| text
file. The string class once again comes in handy. The following has some variation on the
theme of the previous example:

/1: CO1l: HTM.Stri pper.cpp

/1l Filter to remove html tags and narkers
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng namespace std;

string replaceAll(string s, string f, string r) {
unsigned int found = s.find(f);
whi l e(found != string::npos) {
s.replace(found, f.length(), r);
found = s.find(f);
}

return s;

}

string stripHTM.Tags(string s) {
while(true) {
unsigned int left = s.find('<");
unsigned int right = s.find('>");

if(left==string::npos || right==string::npos)
br eak;
s = s.erase(left, right - left + 1);
}
s = replaceAl (s, "&t;", "<");
s = replaceAl (s, ">", ">");
s = replaceAl (s, "&m;", "&");
s = replaceAll (s, " ", " ");
/1 Etc...
return s;

}

int main(int argc, char* argv[]) {

Chapter 14: Templates & Container Classes
48

requi reArgs(argc, 1,
"usage: HTM.Stripper InputFile");
ifstreamin(argv[1]);
assure(in, argv[1]);
const int sz = 4096;
char buf[sz];
whi l e(in.getline(buf, sz)) {
string s(buf);
cout << stripHTM.Tags(s) << endl;

}
Y 11~

The string class can replace one string with another but there’s no facility for replacing al the
strings of one type with another, so the replaceAll() function does this for you, inside awhile
loop that keeps finding the next instance of the find string f. That function is used inside
stripHTM L Tags after it uses erase() to remove everything that appears inside angle braces
(‘<" and ‘>'). Note that | probably haven't gotten all the necessary replacement values, but
you can see what to do (you might even put al the find-replace pairsin atable...). In main()
the arguments are checked, and the fileis read and converted. It is sent to standard output so
you must redirect it with ‘> if you want to write it to afile.

Comparing strings
Comparing strings is inherently different than comparing numbers. Numbers have constant,
universally meaningful values. To evaluate the relationship between the magnitude of two
strings, you must make alexical comparison. Lexical comparison means that when you test a
character to seeif it is“greater than” or “less than” another character, you are actually
comparing the numeric representation of those characters as specified in the collating
sequence of the character set being used. Most often, thiswill be the ASCII collating
sequence, which assigns the printable characters for the English language numbersin the
range from 32 to 127 decimal. In the ASCI| collating sequence, the first “character” in the list
isthe space, followed by several common punctuation marks, and then uppercase and
lowercase letters. With respect to the alphabet, this means that the letters nearer the front have
lower ASCII values than those nearer the end. With these details in mind, it becomes easier to
remember that when alexical comparison that reports sl is “greater than” s2, it Simply means
that when the two were compared, the first differing character in s1 came later in the al phabet
than the character in that same position in s2.

C++ provides several waysto compare strings, and each has their advantages. The simplest to
use are the non member overloaded operator functions operator ==, operator != operator >,
operator <, operator >=, and operator <=.

//: COl1l: ConpStr.cpp
#i ncl ude <string>
#i ncl ude <i ostreanp

Chapter 14: Templates & Container Classes
49

usi ng namespace std;

int main() {
/1 Strings to conpare
string s1("This ");
string s2("That ");
for(int i =0; i< sl.size() &&
i < s2.size(); i++)
/1 See if the string elenents are the sane:
if(sl[i] == s2[i])
cout << slf[i] << " " <<i << endl
/1 Use the string inequality operators
if(sl !'=5s2) {
cout << "Strings aren't the sane:" << " "

if(sl > s2)
cout << "sl is > s2" << endl;
el se
cout << "s2 is > sl1" << endl;
}
Y I~
Here's the output from CompStr.cpp:
TO
h 1
4

Strings aren’t the same: sl is > s2

The overloaded comparison operators are useful for comparing both full strings and
individual string elements.

Notice in the code fragment below the flexibility of argument types on both the left and right
hand side of the comparison operators. The overloaded operator set allows the direct
comparison of string objects, quoted literals, and pointersto C style strings.

/1 The lvalue is a quoted literal and
/1 the rvalue is a string
if("That " == s2)

cout << "A match" << endl;
/1 The lvalue is a string and the rvalue is a
/1 pointer to a c style null term nated string
if(sl !'=s2.c_str())

cout << "No match" << endl;

Y ou won't find the logical not (!) or the logical comparison operators (& & and ||) among
operators for string. (Neither will you find overloaded versions of the bitwise C operators &, |,

Chapter 14: Templates & Container Classes
50

A, or ~.) The overloaded non member comparison operators for the string class are limited to
the subset which has clear, unambiguous application to single characters or groups of
characters.

The compare() member function offers you a great deal more sophisticated and precise
comparison than the non member operator set, because it returns alexical comparison value,
and provides for comparisons that consider subsets of the string data. It provides overloaded
versions that allow you to compare two complete strings, part of either string to a complete
string, and subsets of two strings. This example compares complete strings:

//: CO1l: Conpare.cpp

/1 Denonstrates conpare(), swap()
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {
string first("This");
string second("That");
/1 Which is lexically greater?
switch(first.conmpare(second)) {
case 0: // The sane
cout << first << " and " << second <<
" are lexically equal" << endl
br eak;
case -1: // Less than
first.swap(second);
/1 Fall through this case..
case 1: // Geater than
cout << first <<
" is lexically greater than
second << endl

" e

}
Y 110~

The output from Compar e.cpp looks like this:

| This is lexically greater than That

To compare a subset of the charactersin one or both strings, you add arguments that define
where to start the comparison and how many charactersto consider. For example, we can use
the overloaded version of compare():

sl.compar e(slStartPos, siINumber Chars, s2, s2StartPos, s2Number Char s);

If we substitute the above version of compare() in the previous program so that it only looks
at the first two characters of each string, the program becomes:

Chapter 14: Templates & Container Classes
51

/1: CO1: Conpare2.cpp

/1 Overl oaded conpare()
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng namespace std;

int main() {
string first("This");
string second("That");
/1 Conpare first two characters of each string:
switch(first.conpare(0, 2, second, 0, 2)) {
case 0: // The same
cout << first << " and " << second <<
are lexically equal" << endl
br eak;
case -1: // Less than
first.swap(second);
/1 Fall through this case..
case 1: // Greater than
cout << first <<
is lexically greater than " <<
second << endl

}
Y 11~

The output is:

| This and That are lexically equal

which istrue, for the first two characters of “This’ and “That.”

Indexing with [] vs. at()

In the examples so far, we have used C style array indexing syntax to refer to an individual
character in astring. C++ strings provide an alternative to the §[n] notation: the at() member.
These two idioms produce the same result in C++ if al goes well:

//: CO1: Stringl ndexing. cpp
#i ncl ude <string>
#i ncl ude <i ostreane
usi ng nanmespace std;
int main(){
string s("1234");
cout << s[1] << "
cout << s.at (1) << endl
Y I~

Chapter 14: Templates & Container Classes
52

The output from this code looks like this:
22

However, there is one important difference between [] and at(). When you try to reference
an array element that is out of bounds, at() will do you the kindness of throwing an
exception, while ordinary [] subscripting syntax will leave you to your own devices:

//: CO1l: BadStri ngl ndexi ng. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main(){
string s("1234");
/1 Runtinme problem goes beyond array bounds:
cout << s[5] << endl;
/1 Saves you by throw ng an exception:
cout << s.at(5) << endl;
Y I~

Using at() in place of [] will give you a chance to gracefully recover from references to array
elements that don't exist. at() throws an object of classout_of_range. By catching this object
in an exception handler, you can take appropriate remedial actions such as recalculating the
offending subscript or growing the array. (Y ou can read more about Exception Handling in
Chapter XX)

Using iterators

In the example program NewFind.cpp, we used alot of messy and rather tedious C char
array handling code to change the case of the charactersin a string and then search for the
occurrence of matches to a substring. Sometimes the “quick and dirty” method isjustifiable,
but in general, you won't want to sacrifice the advantages of having your string data safely
and securely encapsulated in the C++ object whereit lives.

Here is a better, safer way to handle case insensitive comparison of two C++ string objects.
Because no datais copied out of the objects and into C style strings, you don’t have to use
pointers and you don’t have to risk overwriting the bounds of an ordinary character array. In
this example, we use the string iter ator . Iterators are themsel ves objects which move through
acollection or container of other objects, selecting them one at atime, but never providing
direct accessto the implementation of the container. Iterators are not pointers, but they are
useful for many of the same jobs.

/1: COl:Cnplter.cpp
/1 Find a group of characters in a string
#i ncl ude <string>

Chapter 14: Templates & Container Classes
53

#i ncl ude <i ostreanp
usi ng namespace std;

/1 Case insensitive conpare function
i nt
stringCnpi (const string& s1, const string& s2) {
/1 Select the first elenent of each string:
string::const_iterator
pl = sl1.begin(), p2 = s2.begin();
/1 Don’t run past the end:
while(pl '=sl.end() && p2 !'= s2.end()) {
/1 Conpare upper-cased chars:
i f(toupper(*pl) != toupper(*p2))
/1 Report which was lexically greater
return (toupper(*pl)<toupper(*p2))? -1 : 1
pl++;
p2++;
}
/1 1f they match up to the detected eos, say
/1 which was longer. Return 0 if the sane.
return(s2.size() - sl.size());

}

int main() {

string si1("Mzart");

string s2("Mdigliani");

cout << stringCnpi(sl, s2) << endl;
Y I~

Notice that the iterators p1 and p2 use the same syntax as C pointers —the **’ operator makes
the value of element at the location given by the iterators available to the toupper () function.
toupper () doesn’t actually change the content of the element in the string. In fact, it can't.
This definition of p1 tells us that we can only use the elements p1 pointsto as constants.

| string::const_iterator pl = sl1.begin();

The way toupper () and the iterators are used in this exampleis called a case preserving case
insensitive comparison. This means that the string didn’t have to be copied or rewritten to
accommodate case insensitive comparison. Both of the strings retain their original data,
unmodified.

Iterating in reverse

Just as the standard C pointer gives us the increment (++) and decrement (--) operatorsto
make pointer arithmetic a bit more convenient, C++ string iterators come in two basic

Chapter 14: Templates & Container Classes
54

varieties. You've seen end() and begin(), which are the tools for moving forward through a
string one element at atime. The reverseiteratorsrend() and rbegin() allow you to step
backwards through a string. Here’s how they work:

/1: COl:RevStr.cpp

/1 Print a string in reverse

#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string s("987654321");
/1 Use this iterator to wal k backwards:
string::reverse_iterator rev;
/1 "lncrementing"” the reverse iterator noves
/] it to successively |lower string el ements:

for(rev = s.rbegin(); rev !'=s.rend(); rev++)
cout << *rev << " "
Y I~

The output from RevStr.cpp looks like this:
| 1234567809

Reverse iterators act like pointers to elements of the string’s character array, except that when
you apply the increment operator to them, they move backward rather than forward. rbegin()
and rend() supply string locations that are consistent with this behavior, to wit, rbegin()
locates the position just beyond the end of the string, and rend() locates the beginning. Aside
from this, the main thing to remember about reverse iterators isthat they aren’t type
equivalent to ordinary iterators. For example, if amember function parameter list includes an
iterator as an argument, you can’t substitute a reverse iterator to get the function to perform
it's job walking backward through the string. Here' s an illustration:

/1 The conpiler won't accept this
string sBackwards(s.rbegin(), s.rend());

The string constructor won't accept reverse iteratorsin place of forward iteratorsin its
parameter list. Thisis also true of string members such as copy(), insert(), and assign().

Strings and character traits

We seem to have worked our way around the margins of case insensitive string comparisons
using C++ string objects, so maybe it's time to ask the obvious question: “Why isn’t case-
insensitive comparison part of the standard string class 7’ The answer provides interesting
background on the true nature of C++ string objects.

Consider what it means for a character to have “case.” Written Hebrew, Farsi, and Kanji don’t
use the concept of upper and lower case, so for those languages this idea has no meaning at

Chapter 14: Templates & Container Classes
55

all. Thisthe first impediment to built-in C++ support for case-insensitive character search and
comparison: the idea of case sensitivity is not universal, and therefore not portable.

It would seem that if there were away of designating that some languages were “all
uppercase” or “al lowercase” we could design a generalized solution. However, some
languages which employ the concept of “case” also change the meaning of particular
characters with diacritical marks: the cedillain Spanish, the circumflex in French, and the
umlaut in German. For this reason, any case-sensitive collating scheme that attempts to be
comprehensive will be nightmarishly complex to use.

Although we usually treat the C++ string as aclass, thisisreally not the case. stringisa
typedef of amore general congtituent, the basic_string< > template. Observe how string is
declared in the standard C++ header file:

t ypedef basic_string<char> string;

To really understand the nature of strings, it’s helpful to delve a bit deeper and look at the
template on which it is based. Here' s the declaration of the basic_string< > template:

t empl at e<cl ass charT,
class traits = char _traits<charT>,
class allocator = allocator<charT> >
cl ass basic_string;

Earlier in this book, templates were examined in a great deal of detail. The main thing to
notice about the two declarations above are that the string type is created when the
basic_string template isinstantiated with char. Inside the basic_string< > template
declaration, the line

class traits = char_traits<charT>,

tells us that the behavior of the class made from the basic_string< > template is specified by
aclass based on the template char_traits< >. Thus, the basic_string< > template provides for
cases where you need string oriented classes that manipul ate types other than char (wide
characters or unicode, for example). To do this, the char _traits< > template controls the
content and collating behaviors of avariety of character sets using the character comparison
functions eq() (equa), ne() (not equal), and It() (less than) upon which the basic_string< >
string comparison functions rely.

Thisiswhy the string class doesn’t include case insensitive member functions: That’s not in
its job description. To change the way the string class treats character comparison, you must
supply adifferent char_traits< > template, because that defines the behavior of the individual
character comparison member functions.

Thisinformation can be used to make a new type of string class that ignores case. First, we'll
define anew case insensitive char _traits< > template that inherits the existing one. Next,
we'll override only the members we need to change in order to make character-by-character
comparison case insensitive. (In addition to the three lexical character comparison members
mentioned above, we'll aso have to supply new implementation of find() and compare().)

Chapter 14: Templates & Container Classes
56

Finally, we'll typedef anew class based on basic_string, but using the case insensitive
ichar_traitstemplate for its second argument.

/1: COl:ichar _traits.h

/1 Creating your own character traits
#i f ndef | CHAR _TRAITS_H

#define | CHAR_ TRAI TS _H

#i ncl ude <string>

#i ncl ude <cctype>

struct ichar _traits : std::char_traits<char> {
/1 We'll only change character by
/1 character conparison functions
static bool eq(char clst, char c2nd) {

return
std::toupper(clst) == std::toupper(c2nd);
}
static bool ne(char clst, char c2nd) {
return
std::toupper(clst) !'= std::toupper(c2nd);
}
static bool It(char clst, char c2nd) {
return
std::toupper(clst) < std::toupper(c2nd);
}

static int conpare(const char* strl
const char* str2, size t n) {

for(int i =0; i <n; i++) {
if(std::tolower(*strl)>std::tolower(*str2))
return 1,
if(std::tolower(*strl)<std::tolower(*str2))
return -1;
if(*strl == 0 || *str2 == 0)
return O;
strl++; str2++; // Conpare the other chars
}
return O;

}

static const char* find(const char* si,
int n, char c) {
while(n-- > 0 &%
std::toupper(*sl) != std::toupper(c))
S1++;
return si;

Chapter 14: Templates & Container Classes
57

}
b
#endif // ICHAR TRAITS H ///:~

If wetypedef anistring classlike this:

t ypedef basic_string<char, ichar_traits,
al | ocat or<char> > istring;

—

hen thisistring will act like an ordinary string in every way, except that it will make all
comparisons without respect to case. Here's an example:

//: CO1: 1 Conpare.cpp
#include "ichar _traits.h"
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng namespace std;

t ypedef basic_string<char, ichar_traits,
al | ocator<char> > istring;

int main() {
/1 The same letters except for case:
istring first = "tHi s";
istring second = "ThlS";
cout << first.conpare(second) << endl;
Y I~

The output from the program is“0”, indicating that the strings compare as equal. Thisisjust a
simple example —in order to make istring fully equivalent to string, we' d have to create the
other functions necessary to support the new istring type.

A string application

My friend Daniel (who designed the cover and page layout for this book) does a lot of work
with Web pages. One tool he uses creates a“site map” consisting of a Java applet to display
the map and an HTML tag that invoked the applet and provided it with the necessary datato
create the map. Daniel wanted to use this data to create an ordinary HTML page (sans applet)
that would contain regular links as the site map. The resulting program turns out to be anice
practical application of the string class, so it is presented here.

Theinput isan HTML file that contains the usual stuff along with an applet tag with a
parameter that beginslike this:

<param nane="source_file" val ue="

Chapter 14: Templates & Container Classes
58

Therest of the line contains encoded information about the site map, al combined into a
single line (it's rather long, but fortunately string objects don’t care). Each entry may or may
not begin with a number of ‘# signs; each of these indicates one level of depth. If no ‘# sign
is present the entry will be considered to be at level one. After the ‘#' isthe text to be
displayed on the page, followed by a‘* %’ and the URL to use asthe link. Each entry is
terminated by a‘*’. Thus, asingle entry in the line might look like this:

| ###| Useful Art % /Build/useful _art.htnl*
The ‘[at the beginning is an artifact that needs to be removed.

My solution was to create an | tem class whose constructor would take input text and create an
object that contains the text to be displayed, the URL and the level. The objects essentially
parse themselves, and at that point you can read any value you want. In main(), the input file
is opened and read until the line contains the parameter that we're interested in. Everything
but the site map codes are stripped away from this string, and then it is parsed into | tem
objects:

//: CO1l: SiteMapConvert.cpp

/1 Using strings to create a custom conversion
/1 programthat generates HTM. out put

#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

#i ncl ude <cstdlib>

usi ng nanmespace std;

class Item{
string id, url;

i nt dept h;
string renoveBar(string s) {
if(s[0] =="]")

return s.substr(1);
el se return s;

}
public:
[tem(string in, int& index) : depth(0) {
while(in[index] =="# && index < in.size()){
dept h++;
i ndex++;

}

// 0 nmeans no '#' nmarks were found:
i f(depth == 0) depth = 1;
while(in[index] '= "% && index < in.size())

Chapter 14: Templates & Container Classes
59

id += in[index++];
id = renoveBar (id)
i ndex++; // Move past '%

while(in[index] !'="*" && index < in.size())
url += in[index++];
url = renoveBar (url)

i ndex++; // To nobve past '*'
}
string identifier() { returnid; }
string path() { return url; }
int level () { return depth; }

}s

int main(int argc, char* argv[]) {
requi reArgs(argc, 1,
"usage: SiteMapConvert inputfilename");
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (" pl ai nmap. htm ") ;
string |line;
whil e(getline(in, line)) {
if(line.find("<param nane=\"source file\"")
= string::npos) {
/1l Extract data fromstart of sequence
/1 until the term nating quote nmark

line = line.substr(line.find("value=\"")
+ string("value=\"").size());
line = line.substr(O,

line.find last_of ("\""));
int index = 0;
whi l e(index < line.size()) {
Itemiten(line, index);
string startlLevel, endLevel;
if(itemlevel () == 1) {

startLevel = "<hl>";
endLevel = "</ hl>";
} else
for(int i =0; i <itemlevel(); i++)

for(int j =0; j <5; j+4)
out << " ";
string htmLine = "<a href=\""
+ itempath() + "\">"
+ itemidentifier() + "
"

Chapter 14: Templates & Container Classes
60

out << startlLevel << htnlLine
<< endLevel << endl;
}

break; // Qut of while |oop
}
}
Y I~

Item contains a private member function removeBar () that is used internally to strip off the
leading bars, if they appear.

The constructor for Item initializes depth to O to indicate that no ‘# signs were found yet; if
none are found then it is assumed the | tem should be displayed at level one. Each character in
the string is examined using operator|] to find the depth, id and url values. The other
member functions simply return these values.

After opening the files, main() uses string::find() to locate the line containing the site map
data. At this point, substr() is used in order to strip off the information before and after the
site map data. The subsequent while loop performs the parsing, but notice that the value index
is passed by reference into the Item constructor, and that constructor incrementsindex as it
parses each new | tem, thus moving forward in the sequence.

If an Itemisat level one, then an HTML h1 tag is used, otherwise the elements are indented
using HTML non-breaking spaces. Note in theinitialization of htmlLine how easy it isto
construct a string — you can just combine quoted character arrays and other string objects
using oper ator +.

When the output is written to the destination file, startL evel and endL evel will only produce
results if they have been given any value other than their default initialization values.

Summary

C++ string objects provide devel opers with a number of great advantages over their C
counterparts. For the most part, the string class makes referring to strings through the use of
character pointers unnecessary. This eliminates an entire class of software defects that arise
from the use of uninitialized and incorrectly valued pointers. C++ strings dynamically and
transparently grow their internal data storage space to accommodate increases in the size of
the string data. This means that when the datain a string grows beyond the limits of the
memory initially allocated to it, the string object will make the memory management calls that
take space from and return space to the heap. Consistent allocation schemes prevent memory
leaks and have the potential to be much more efficient than “roll your own” memory
management.

The string class member functions provide afairly comprehensive set of tools for creating,
modifying, and searching in strings. string comparisons are always case sensitive, but you
can work around this by copying string datato C style null terminated strings and using case

Chapter 14: Templates & Container Classes
61

insensitive string comparison functions, temporarily converting the data held in sting objects
to asingle case, or by creating a case insensitive string class which overrides the character
traits used to create the basic_string object.

Exercises

1 A palindrome is aword or group of words that read the same forward and
backward. For example “madam” or “wow”. Write a program that takes a
string argument from the command line and returns TRUE if the string was
apalindrome.

2. Sometimes the input from afile stream contains a two character sequence to
represent a newline. These two characters (0x0a 0x0d) produce extra blank
lines when the stream is printed to standard out. Write a program that finds
the character 0x0d (ASCI| carriage return) and deletes it from the string.

3. Write a program that reverses the order of the charactersin a string.

Chapter 14: Templates & Container Classes
62

2. |ostreams

There’ s much more you can do with the general 1/0 problem
than just take standard 1/O and turn it into a class.

Wouldn't it be nice if you could make all the usual “receptacles’ — standard 1/0, files and
even blocks of memory —look the same, so you need to remember only one interface? That’s
the idea behind iostreams. They’ re much easier, safer, and often more efficient than the
assorted functions from the Standard C stdio library.

lostream is usually the first class library that new C++ programmers learn to use. This chapter
explores the use of iostreams, so they can replace the C /O functions through the rest of the

book. In future chapters, you'll see how to set up your own classes so they’ re compatible with
iostreams.

Why 1ostreams?

Y ou may wonder what's wrong with the good old C library. And why not “wrap” the C

library in aclass and be done with it? Indeed, there are situations when this is the perfect thing
to do, when you want to make a C library a bit safer and easier to use. For example, suppose
you want to make sure astdio file is always safely opened and properly closed, without
relying on the user to remember to call the close() function:

/1: CO2:Filedass.h

/1 Stdio files wapped
#i f ndef FILECLAS_H
#defi ne FI LECLAS H

#i ncl ude <cstdi o>

class FileC ass {
std:: FILE* f;

public:

Fil eCl ass(const char* fname, const char* node="r");
~Fil ed ass();

std:: FILE* fp();
b
#endif // FILECLAS H///:~

63

In C when you perform file 1/0, you work with a naked pointer to a FILE struct, but this class
wraps around the pointer and guarantees it is properly initialized and cleaned up using the
constructor and destructor. The second constructor argument is the file mode, which defaults
to“r” for “read.”

To fetch the value of the pointer to use in the file I/O functions, you use the fp() access
function. Here are the member function definitions:

/1: CO2:Filedass.cpp {O
/1 1mplenentation

#i nclude "Fil ed ass. h"

#i ncl ude <cstdlib>

usi ng nanmespace std;

FileC ass:: Fil ed ass(const char* fnane, const char* node){
f = fopen(fname, node);
if(f == NULL) {
printf("%: file not found\n", fnane);
exit(l);
}
}

FileC ass::~FileC ass() { fclose(f); }

FILE* FileC ass::fp() { return f; } ///:~

The constructor calls fopen(),as you would normally do, but it also checksto ensure the
result isn't zero, which indicates a failure upon opening the file. If there's afailure, the name
of thefileis printed and exit() is called.

The destructor closes the file, and the access function fp()returnsf. Here's a simple example
using class FileClass:

[1: CO2:Filed assTest.cpp
/1{L} Filed ass

/1 Testing class File

#i nclude "Fil ed ass. h"
#include "../require. h"
usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);
FileC ass f(argv[1l]); // Opens and tests
const int bsize = 100;
char buf[bsize];
whi | e(fgets(buf, bsize, f.fp()))

Chapter 14: Templates & Container Classes
64

put s(buf);
} // File autonmatically closed by destructor
11~

Y ou create the FileClass object and use it in normal C file 1/O function calls by calling fp().
When you're done with it, just forget about it, and the file is closed by the destructor at the
end of the scope.

True wrapping

Even though the FILE pointer is private, it isn't particularly safe because fp() retrievesit. The
only effect seems to be guaranteed initialization and cleanup, so why not make it public, or
use a struct instead? Notice that while you can get a copy of f using fp(), you cannot assign
to f —that’ s completely under the control of the class. Of course, after capturing the pointer
returned by fp(), the client programmer can still assign to the structure elements, so the safety
isin guaranteeing avalid FILE pointer rather than proper contents of the structure.

If you want complete safety, you have to prevent the user from direct accessto the FILE
pointer. This means some version of al the normal file 1/0 functions will have to show up as
class members, so everything you can do with the C approach is available in the C++ class:

[1: CO2: Fullwap.h
/1 Conpletely hidden file IO
#i f ndef FULLWRAP_H
#defi ne FULLWRAP_H

class File {

std:: FILE* f;
std::FILE* F(); // Produces checked pointer to f
public:

File(); // Create object but don't open file
Fil e(const char* path,

const char* node = "r");
~File();
i nt open(const char* path,
const char* node = "r");

i nt reopen(const char* path,
const char* node);
int getc();
int ungetc(int c);
int putc(int c);
int puts(const char* s);
char* gets(char* s, int n);
int printf(const char* fornmat, ...);
size t read(void* ptr, size_ t size,

Chapter 14: Templates & Container Classes
65

size t n);
size t wite(const void* ptr,
size t size, size_t n);
int eof();
int close();
int flush();
i nt seek(long offset, int whence);
i nt getpos(fpos_t* pos);
i nt setpos(const fpos_ t* pos);
long tell();
void rew nd();
voi d set buf (char* buf);
i nt setvbuf(char* buf, int type, size t sz);
int error();
void clearErr();
b
#endi f // FULLMRAP_H ///: ~

This class contains almost all the file 1/O functions from cstdio. vfprintf() ismissing; itis
used to implement the printf(’) member function.

File has the same constructor as in the previous example, and it also has a default constructor.
The default constructor isimportant if you want to create an array of File objects or use aFile
object as a member of another class where the initialization doesn’'t happen in the constructor
(but sometime after the enclosing object is created).

The default constructor sets the private FILE pointer f to zero. But now, before any reference
to f, its value must be checked to ensure it isn’t zero. Thisis accomplished with the last
member function in the class, F(), which is private because it is intended to be used only by
other member functions. (We don’'t want to give the user direct access to the FIL E structure
in this class.)®

Thisis not aterrible solution by any means. It's quite functional, and you could imagine
making similar classes for standard (console) 1/0 and for in-core formatting (reading/writing a
piece of memory rather than afile or the console).

The big stumbling block is the runtime interpreter used for the variable-argument list
functions. Thisisthe code that parses through your format string at runtime and grabs and
interprets arguments from the variable argument list. It's a problem for four reasons.

1. Even if you use only afraction of the functionality of the interpreter, the
whole thing gets loaded. So if you say:

6 The implementation and test files for FULLWRAP are available in the freely distributed
source code for this book. See preface for details.

Chapter 14: Templates & Container Classes
66

printf("%", 'x');

you'll get the whole package, including the parts that print out floating-
point numbers and strings. There's no option for reducing the amount of
space used by the program.

Because the interpretation happens at runtime there’s a performance
overhead you can’t get rid of. It's frustrating because all the information is
therein the format string at compile time, but it's not evaluated until
runtime. However, if you could parse the arguments in the format string at
compile time you could make hard function calls that have the potential to
be much faster than aruntime interpreter (although the printf() family of
functionsis usually quite well optimized).

A worse problem occurs because the evaluation of the format string doesn’t
happen until runtime: there can be no compile-time error checking. You're
probably very familiar with this problem if you' ve tried to find bugs that
came from using the wrong number or type of argumentsin aprintf()
statement. C++ makes a big deal out of compile-time error checking to find
errors early and make your life easier. It seems a shame to throw it away for
an /O library, especially because I/O is used alot.

For C++, the most important problem is that the printf() family of
functionsis not particularly extensible. They're really designed to handle
the four basic datatypesin C (char, int, float, double and their variations).
You might think that every time you add a new class, you could add an
overloaded printf() and scanf(') function (and their variants for files and
strings) but remember, overloaded functions must have different typesin
their argument lists and the printf() family hidesits type information in the
format string and in the variable argument list. For alanguage like C++,
whose goal isto be able to easily add new data types, thisis an ungainly
restriction.

| ostreams to the rescue

All these issues make it clear that one of the first standard class libraries for C++ should
handle 1/0. Because “hello, world” is the first program just about everyone writesin a new
language, and because I/O is part of virtually every program, the I/O library in C++ must be
particularly easy to use. It also has the much greater challenge that it can never know all the
classes it must accommodate, but it must neverthel ess be adaptable to use any new class. Thus
its constraints required that this first class be atruly inspired design.

This chapter won't look at the details of the design and how to add iostream functionality to
your own classes (you'll learn that in alater chapter). First, you need to learn to use iostreams.

Chapter 14: Templates & Container Classes

67

In addition to gaining a great deal of leverage and clarity in your dealings with 1/O and
formatting, you'll also see how areally powerful C++ library can work.

Sneak preview of operator overloading

Before you can use the iostreams library, you must understand one new feature of the
language that won't be covered in detail until alater chapter. To use iostreams, you need to
know that in C++ all the operators can take on different meanings. In this chapter, we're
particularly interested in << and >>. The statement “operators can take on different
meanings’ deserves some extrainsight.

In Chapter XX, you learned how function overloading allows you to use the same function
name with different argument lists. Now imagine that when the compiler sees an expression
consisting of an argument followed by an operator followed by an argument, it smply calls a
function. That is, an operator is simply a function call with a different syntax.

Of course, thisis C++, which is very particular about data types. So there must be a
previously declared function to match that operator and those particular argument types, or
the compiler will not accept the expression.

What most people find immediately disturbing about operator overloading is the thought that
maybe everything they know about operatorsin C is suddenly wrong. Thisis absolutely false.
Here are two of the sacred design goals of C++:

1 A program that compilesin C will compile in C++. The only compilation
errors and warnings from the C++ compiler will result from the “holes’ in
the C language, and fixing these will require only local editing. (Indeed, the
complaints by the C++ compiler usually lead you directly to undiscovered
bugsin the C program.)

2. The C++ compiler will not secretly change the behavior of a C program by
recompiling it under C++.

Keeping these goals in mind will help answer alot of questions; knowing there are no
capricious changes to C when moving to C++ helps make the transition easy. In particular,
operators for built-in types won't suddenly start working differently — you cannot change their
meaning. Overloaded operators can be created only where new data types are involved. So
you can create a new overloaded operator for a new class, but the expression

| 1 << 4;
won’'t suddenly change its meaning, and theillegal code
| 1.414 << 1

won't suddenly start working.

Chapter 14: Templates & Container Classes
68

|nserters and extractors

In the iostreams library, two operators have been overloaded to make the use of iostreams
easy. The operator << isoften referred to as an inserter for iostreams, and the operator >> is
often referred to as an extractor.

A streamis an object that formats and holds bytes. Y ou can have an input stream (istream) or
an output stream (ostream). There are different types of istreams and ostreams: ifstreams and
ofstreams for files, istrstreams, and ostrstreams for char* memory (in-core formatting), and
istringstreams & ostringstreams for interfacing with the Standard C++ string class. All these
stream objects have the same interface, regardless of whether you' re working with afile,
standard 1/0O, a piece of memory or astring object. The single interface you learn also works
for extensions added to support new classes.

If astreamis capable of producing bytes (an istream), you can get information from the
stream using an extractor. The extractor produces and formats the type of information that’s
expected by the destination object. To see an example of this, you can use the cin object,
which isthe iostream equivalent of stdin in C, that is, redirectable standard input. This object
is pre-defined whenever you include the iostream.h header file. (Thus, the iostream library is
automatically linked with most compilers.)

int i;

cin >>i;

float f;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

There's an overloaded oper ator >> for every data type you can use as the right-hand
argument of >> in an iostream statement. (Y ou can also overload your own, which you'll see
in alater chapter.)

To find out what you have in the various variables, you can use the cout object
(corresponding to standard output; there’s also a cerr object corresponding to standard error)
with the inserter <<:

cout << | =)
cout << i;

cout << "\n";
cout << "f ="}
cout << f;

cout << "\n";

Chapter 14: Templates & Container Classes

69

cout << "c =";
cout << ¢;

cout << "\n";
cout << "buf =";
cout << bhuf;

cout << "\n";

Thisis notably tedious, and doesn’t seem like much of an improvement over printf(), type
checking or no. Fortunately, the overloaded inserters and extractors in iostreams are designed
to be chained together into a complex expression that is much easier to write:

cout << "ij << | << endl;
cout << "f << f << endl;
cout << "¢ << ¢ << endl;

cout << "buf " << puf << endl;

You'll understand how this can happen in alater chapter, but for now it's sufficient to take the
attitude of a class user and just know it works that way.

Manipulators

One new element has been added here: a manipulator called endl. A manipulator acts on the
stream itself; in this case it inserts a newline and flushes the stream (puts out all pending
characters that have been stored in the internal stream buffer but not yet output). Y ou can also
just flush the stream:

| cout << flush;

There are additional basic manipulators that will change the number base to oct (octal), dec
(decimal) or hex (hexadecimal):

| cout << hex << "0x" << i << endl;
There's amanipulator for extraction that “eats’ white space:
| cin >> ws;

and a manipulator called ends, which islike endl, only for strstreams (covered in awhile).
These are al the manipulators in <iostream>, but there are more in <iomanip> you'll see
later in the chapter.

Common usage

Although cin and the extractor >> provide a nice balance to cout and the inserter <<, in
practice using formatted input routines, especially with standard input, has the same problems
you run into with scanf(). If the input produces an unexpected value, the process is skewed,
and it’s very difficult to recover. In addition, formatted input defaults to whitespace
delimiters. So if you collect the above code fragments into a program

Chapter 14: Templates & Container Classes
70

/1
/1

int main() {
int i;
cin >> i;

float f;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

<<
<<
<<
<<

cout
cout
cout
cout

"
" f
"c
"bu

—h
1

flush;
hex <<

cout <<
cout <<
Y 11~

C02: | osexanp.
| ost r eam exanpl es
#i ncl ude <i ostreanp
usi ng namespace std;

cpp

<<
<< f
<< ¢

n OX"

and give it the following input,

| 12 1.4 ¢ this is a test

<< endl;
<< endl;
<< endl;
buf << endl;

<< | << endl:

you'll get the same output as if you giveit

12

1.4

c

this is a test

[12

f 1.4
c
buf

Oxc

1o

this

and the output is, somewhat unexpectedly,

Chapter 14:

71

Templates & Container Classes

Notice that buf got only the first word because the input routine looked for a space to delimit
the input, which it saw after “this.” In addition, if the continuous input string is longer than
the storage allocated for buf, you'll overrun the buffer.

It seems cin and the extractor are provided only for completeness, and thisis probably a good
way to look at it. In practice, you'll usually want to get your input alineat atimeasa
sequence of characters and then scan them and perform conversions once they're safely in a
buffer. Thisway you don’t have to worry about the input routine choking on unexpected data.

Another thing to consider is the whole concept of a command-line interface. This has made
sense in the past when the console was little more than a glass typewriter, but the world is
rapidly changing to one where the graphical user interface (GUI) dominates. What is the
meaning of console I/O in such aworld? It makes much more sense to ignore cin altogether
other than for very simple examples or tests, and take the following approaches:

1 If your program requiresinput, read that input from afile —you’ll soon see
it's remarkably easy to use files with iostreams. | ostreams for files still
works fine with a GUI.

2. Read the input without attempting to convert it. Once the input is someplace
where it can't foul things up during conversion, then you can safely scan it.

3. Output is different. If you're using a GUI, cout doesn’t work and you must
send it to afile (which isidentical to sending it to cout) or use the GUI
facilities for data display. Otherwise it often makes sense to send it to cout.
In both cases, the output formatting functions of iostreams are highly useful.

Line-oriented input

To grab input aline at atime, you have two choices: the member functions get() and

getling(). Both functions take three arguments: a pointer to a character buffer in which to
store the result, the size of that buffer (so they don’t overrun it), and the terminating character,
to know when to stop reading input. The terminating character has a default value of ‘\n’,
which iswhat you'll usually use. Both functions store a zero in the result buffer when they
encounter the terminating character in the input.

So what' s the difference? Subtle, but important: get() stops when it sees the delimiter in the
input stream, but it doesn’t extract it from the input stream. Thus, if you did another get()
using the same delimiter it would immediately return with no fetched input. (Presumably, you
either use a different delimiter in the next get(') statement or a different input function.)
getling(), on the other hand, extracts the delimiter from the input stream, but still doesn’t
store it in the result buffer.

Generally, when you're processing a text file that you read aline at atime, you' [l want to use
getline().

Chapter 14: Templates & Container Classes
72

Overloaded versions of get()

get() also comesin three other overloaded versions: one with no arguments that returns the
next character, using an int return value; one that stuffs a character into its char argument,
using areference (You'll have to jump forward to Chapter XX if you want to understand it
right thisminute); and one that stores directly into the underlying buffer structure of
another iostream object. That is explored later in the chapter.

Reading raw bytes

If you know exactly what you' re dealing with and want to move the bytes directly into a
variable, array, or structure in memory, you can useread(). Thefirst argument is a pointer to
the destination memory, and the second is the number of bytesto read. Thisis especially
useful if you've previoudly stored the information to afile, for example, in binary form using
the complementary write() member function for an output stream. You'll see examples of all
these functions later.

Error handling

All the versions of get() and getling() return the input stream from which the characters
came except for get(') with no arguments, which returns the next character or EOF. If you get
the input stream object back, you can ask it if it's still OK. In fact, you can ask any iostream
object if it's OK using the member functions good(), eof(), fail(), and bad(). These return
state information based on the eofbit (indicates the buffer is at the end of sequence), the
failbit (indicates some operation has failed because of formatting issues or some other
problem that does not affect the buffer) and the badbit (indicates something has gone wrong
with the buffer).

However, as mentioned earlier, the state of an input stream generally gets corrupted in weird
ways only when you're trying to do input to specific types and the type read from the input is
inconsistent with what is expected. Then of course you have the problem of what to do with
the input stream to correct the problem. If you follow my advice and read input aline at a
time or asa big glob of characters (with read()) and don’t attempt to use the input formatting
functions except in simple cases, then all you' re concerned with is whether you're at the end
of the input (EOF). Fortunately, testing for this turns out to be simple and can be done inside
of conditionals, such as while(cin) or if(cin). For now you'll have to accept that when you use
an input stream object in this context, the right value is safely, correctly and magically
produced to indicate whether the object has reached the end of the input. Y ou can also use the
Boolean NOT operator !, asin if(!cin), to indicate the stream is not OK; that is, you've
probably reached the end of input and should quit trying to read the stream.

There are times when the stream becomes not-OK, but you understand this condition and
want to go on using it. For example, if you reach the end of an input file, the eofbit and failbit
are set, so aconditional on that stream object will indicate the stream is no longer good.

Chapter 14: Templates & Container Classes
73

However, you may want to continue using the file, by seeking to an earlier position and
reading more data. To correct the condition, simply call the clear () member function.’

File 1ostreams

Manipulating files with iostreams is much easier and safer than using cstdio in C. All you do
to open afileis create an object; the constructor does the work. Y ou don’t have to explicitly
close afile (although you can, using the close() member function) because the destructor will
close it when the object goes out of scope.

To create afile that defaults to input, make an ifstr eam object. To create one that defaults to
output, make an ofstream object.

Here's an example that shows many of the features discussed so far. Note the inclusion of
<fstream> to declare the file 1/0 classes; this also includes <iostream>.

[1: CO2:Strfile.cpp

/1 Stream|/Owth files

/1 The difference between get() & getline()
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {

const int sz = 100; // Buffer size;

char buf[sz];

{
ifstreamin("Strfile.cpp"); // Read
assure(in, "Strfile.cpp"); // Verify open
of streamout ("Strfile.out"); // Wite
assure(out, "Strfile.out");
int i =1, // Line counter

/1 A less-convenient approach for |ine input:
whi l e(in.get(buf, sz)) { // Leaves \n in input
in.get(); // Throw away next character (\n)
cout << buf << endl; // Must add \n
/1 File output just like standard I/C

7 Newer implementations of iostreams will still support this style of handling errors, but in
some cases will aso throw exceptions.

Chapter 14: Templates & Container Classes
74

out << i++ << ": " << buf << endl;

}

} // Destructors close in & out

ifstreamin("Strfile.out");

assure(in, "Strfile.out");

/1 More convenient |ine input:

whil e(in.getline(buf, sz)) { // Renbves \n
char* cp = buf;

while(*cp I'=":")
Cp++;
cp += 2; // Past ": "
cout << cp << endl; // Must still add \n
}
Y I~

The creation of both the ifstream and ofstream are followed by an assure() to guarantee the
file has been successfully opened. Here again the object, used in a situation where the
compiler expects an integral result, produces a value that indicates success or failure. (To do
this, an automatic type conversion member function is called. These are discussed in Chapter
XX.)

The first while loop demonstrates the use of two forms of the get() function. The first gets
charactersinto a buffer and puts a zero terminator in the buffer when either sz — 1 characters
have been read or the third argument (defaulted to ‘\n") is encountered. get() leaves the
terminator character in the input stream, so this terminator must be thrown away viain.get()
using the form of get() with no argument, which fetches a single byte and returnsit as an int.
Y ou can a'so use the ignor e) member function, which has two defaulted arguments. The
first isthe number of characters to throw away, and defaults to one. The second isthe
character at which the ignore() function quits (after extracting it) and defaults to EOF.

Next you see two output statements that ook very similar: one to cout and one to the file out.
Notice the convenience here; you don’'t need to worry about what kind of object you're
dealing with because the formatting statements work the same with all ostream objects. The
first one echoes the line to standard output, and the second writes the line out to the new file
and includes a line number.

To demongtrate getling(), it's interesting to open the file we just created and strip off the line
numbers. To ensure the fileis properly closed before opening it to read, you have two choices.
Y ou can surround the first part of the program in braces to force the out object out of scope,
thus calling the destructor and closing the file, which is done here. Y ou can aso call close()
for both files; if you want, you can even reuse the in object by calling the open() member
function (you can also create and destroy the object dynamically on the heap asisin Chapter
XX).

Chapter 14: Templates & Container Classes
75

The second while loop shows how getline() removes the terminator character (itsthird
argument, which defaultsto ‘\n’) from the input stream when it’s encountered. Although
getling(), like get(), puts azero in the buffer, it still doesn’t insert the terminating character.

Open modes

Y ou can control the way afile is opened by changing a default argument. The following table
shows the flags that control the mode of thefile;

Flag Function

ios::in Opens an input file. Use this as an open
mode for an ofstream to prevent
truncating an existing file.

ios::out Opens an output file. When used for an
ofstream without ios::app, ios::ate or
ios::in, ios::truncisimplied.

ios::app Opens an output file for appending.

ios::ate Opens an existing file (either input or
output) and seeks the end.

ios::nocr eate Opensafileonly if it already exists.
(Otherwise it fails.)

ios::noreplace Opens afileonly if it does not exist.
(Otherwise it fails.)

ios::trunc Opens afile and deletes the old file, if
it already exists.

ios::binary Opens afilein binary mode. Default is
text mode.

These flags can be combined using a bitwise or.

|ostream buffering

Whenever you create a new class, you should endeavor to hide the details of the underlying
implementation as possible from the user of the class. Try to show them only what they need
to know and make the rest private to avoid confusion. Normally when using iostreams you
don’t know or care where the bytes are being produced or consumed; indeed, thisis different

Chapter 14: Templates & Container Classes
76

depending on whether you' re dealing with standard 1/O, files, memory, or some newly created
classor device.

There comes atime, however, when it becomes important to be able to send messages to the
part of the iostream that produces and consumes bytes. To provide this part with a common
interface and still hide its underlying implementation, it is abstracted into its own class, called
streambuf. Each iostream object contains a pointer to some kind of streambuf. (The kind
depends on whether it deals with standard 1/O, files, memory, etc.) Y ou can access the
streambuf directly; for example, you can move raw bytes into and out of the streambuf,
without formatting them through the enclosing iostream. Thisis accomplished, of course, by
calling member functions for the streambuf object.

Currently, the most important thing for you to know is that every iostream object contains a
pointer to a streambuf object, and the streambuf has some member functions you can call if
you need to.

To allow you to access the streambuf, every iostream object has a member function called
rdbuf () that returns the pointer to the object’s streambuf. Thisway you can call any member
function for the underlying streambuf. However, one of the most interesting things you can
do with the streambuf pointer isto connect it to another iostream object using the <<
operator. Thisdrains all the bytes from your object into the one on the |eft-hand side of the
<<. Thismeansif you want to move all the bytes from one iostream to another, you don’t
have to go through the tedium (and potential coding errors) of reading them one byte or one
line at atime. It's a much more elegant approach.

For example, here’s avery simple program that opens a file and sends the contents out to
standard output (similar to the previous example):

/1: CO02:Stype.cpp

/1 Type a file to standard out put
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1); // Mist have a conmand |ine
ifstreamin(argv[1]);
assure(in, argv[1]); // Ensure file exists
cout << in.rdbuf(); // CQutputs entire file
Y I~

After making sure there is an argument on the command line, an ifstream is created using this
argument. The open will fail if the file doesn’t exist, and this failure is caught by the
assert(in).

All the work really happensin the statement

Chapter 14: Templates & Container Classes
77

| cout << in.rdbuf();

which causes the entire contents of the file to be sent to cout. Thisis not only more succinct
to code, it is often more efficient than moving the bytes one at atime.

Using get() with a streambuf

Thereisaform of get() that allows you to write directly into the streambuf of another
object. The first argument is the destination streambuf (whose address is mysterioudy taken
using areference, discussed in Chapter XX), and the second is the terminating character,
which stops the get() function. So yet another way to print afile to standard output is

//: CO02: Sbufget.cpp

/1 Get directly into a streanmbuf
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
i fstreamin("Sbufget.cpp");
assure(in, "Sbufget.cpp");
whi [e(in.get(*cout.rdbuf()))
in.ignore();
Y I~

rdbuf() returns apointer, so it must be dereferenced to satisfy the function’s need to see an
object. The get() function, remember, doesn’t pull the terminating character from the input
stream, so it must be removed using ignore() so get() doesn’t just bonk up against the
newline forever (which it will, otherwise).

Y ou probably won't need to use a technique like this very often, but it may be useful to know
it exists.

Seeking In 1ostreams

Each type of iostream has a concept of where its “next” character will come from (if it'san
istream) or go (if it's an ostream). In some situations you may want to move this stream
position. You can do it using two models: One uses an absolute |ocation in the stream called
the streampos; the second works like the Standard C library functions fseek() for afile and
moves a given number of bytes from the beginning, end, or current position in the file.

The streampos approach requires that you first call a“tell” function: tellp(') for an ostream
or tellg() for anistream. (The“p” refersto the “put pointer” and the “g” refersto the “get
pointer.”) This function returns a streampos you can later use in the single-argument version

Chapter 14: Templates & Container Classes
78

of seekp() for an ostream or seekg() for anistream, when you want to return to that
position in the stream.

The second approach is arelative seek and uses overloaded versions of seekp() and seekg().
Thefirst argument is the number of bytes to move: it may be positive or negative. The second
argument is the seek direction:

ios::beg From beginning of stream
ios::cur Current position in stream
ios::end From end of stream

Here's an exampl e that shows the movement through a file, but remember, you're not limited
to seeking within files, as you are with C and cstdio. With C++, you can seek in any type of
iostream (although the behavior of cin & cout when seeking is undefined):

/1: CO02: Seeki ng. cpp

/1 Seeking in iostreans
#include "../require. h"
#i ncl ude <i ostreanp

#i ncl ude <fstreanr
usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(arge, 1);
ifstreamin(argv[1]);
assure(in, argv[1]); // File must already exist
i n.seekg(0, ios::end); // End of file
streanmpos sp = in.tellg(); // Size of file
cout << "file size = " << sp << endl;
i n.seekg(-sp/ 10, ios::end);
streanpos sp2 = in.tellg();
i n.seekg(0, ios::beg); // Start of file
cout << in.rdbuf(); // Print whole file
i n.seekg(sp2); // Mwve to streanpos
/1 Prints the last 1/10th of the file:
cout << endl << endl << in.rdbuf() << endl;
Y I~

This program picks a file name off the command line and opensit as an ifstream. assert()
detects an open failure. Because thisis atype of istream, seekg() is used to position the “get
pointer.” Thefirst call seeks zero bytes off the end of thefile, that is, to the end. Because a
streamposisatypedef for along, calling tellg() at that point also returns the size of thefile,
which is printed out. Then a seek is performed moving the get pointer 1/10 the size of thefile
— notice it's a negative seek from the end of thefile, so it backs up from the end. If you try to
seek positively from the end of the file, the get pointer will just stay at the end. The

Chapter 14: Templates & Container Classes
79

streampos at that point is captured into sp2, then aseekg() is performed back to the
beginning of the file so the whole thing can be printed out using the str eambuf pointer
produced with rdbuf(). Finally, the overloaded version of seekg() is used with the
streampos sp2 to move to the previous position, and the last portion of thefileis printed out.

Creating read/write files

Now that you know about the streambuf and how to seek, you can understand how to create
a stream object that will both read and write afile. The following code first creates an
ifstream with flags that say it's both an input and an output file. The compiler won't let you
writeto an ifstream, however, so you need to create an ostr eam with the underlying stream
buffer:

ifstreamin("filename", ios::in|ios::out);
ostream out (i n.rdbuf());

Y ou may wonder what happens when you write to one of these objects. Here’ s an example:

/1: CO2:1ofile.cpp

/! Reading & witing one file
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

int main() {
ifstreamin("lofile.cpp");

assure(in, "lofile.cpp");

of streamout ("l ofile.out");
assure(out, "lofile.out");

out << in.rdbuf(); // Copy file
in.close();

out.cl ose();
/1 Open for reading and writing:
ifstreamin2("lofile.out", ios::in | ios::out);
assure(in2, "lofile.out");
ostream out 2(i n2. rdbuf ());
cout << in2.rdbuf(); // Print whole file
out 2 << "Were does this end up?”;
out 2. seekp(0, ios::beg);
out2 << "And what about this?"
i n2. seekg(0, ios::beg);
cout << in2.rdbuf();

Y I~

Chapter 14: Templates & Container Classes
80

Thefirst five lines copy the source code for this programinto afile called iofile.out, and then
close thefiles. This gives us a safe text file to play around with. Then the aforementioned
technique is used to create two objects that read and write to the same file. In cout <<
in2.rdbuf(), you can see the “get” pointer isinitialized to the beginning of thefile. The “put”
pointer, however, is set to the end of the file because “Where does this end up?’ appears
appended to the file. However, if the put pointer is moved to the beginning with a seekp(), all
the inserted text overwrites the existing text. Both writes are seen when the get pointer is
moved back to the beginning with a seekg(), and thefileis printed out. Of course, thefileis
automatically saved and closed when out2 goes out of scope and its destructor is called.

stringstreams
strstreams

Before there were stringstr eams, there were the more primitive strstr eams. Although these
are not an official part of Standard C++, they have been around along time so compilers will
no doubt leave in the strstream support in perpetuity, to compile legacy code. Y ou should
always use stringstreams, but it’s certainly likely that you'll come across code that uses
strstreams and at that point this section should come in handy. In addition, this section
should make it fairly clear why stringstreams have replace strstreams.

A strstream works directly with memory instead of afile or standard outpuit. It allows you to
use the same reading and formatting functions to manipulate bytes in memory. On old
computers the memory was referred to as core so this type of functionality is often called in-
core formatting.

The class names for strstreams echo those for file streams. If you want to create a strstream to
extract characters from, you create an istrstream. If you want to put charactersinto a
strstream, you create an ostr stream.

String streams work with memory, so you must deal with the issue of where the memory
comes from and where it goes. Thisisn't terribly complicated, but you must understand it and
pay attention (it turned out is was too easy to lose track of this particular issue, thus the birth
of stringstreams).

User-allocated storage

The easiest approach to understand is when the user is responsible for allocating the storage.
Withistrstreamsthisis the only allowed approach. There are two constructors:

istrstream :istrstreanm(char* buf);
istrstream:istrstrean(char* buf, int size);

Chapter 14: Templates & Container Classes
81

The first constructor takes a pointer to a zero-terminated character array; you can extract bytes
until the zero. The second constructor additionally requires the size of the array, which

doesn’'t have to be zero-terminated. Y ou can extract bytes all the way to buf[size], whether or
not you encounter a zero along the way.

When you hand an istrstream constructor the address of an array, that array must already be
filled with the characters you want to extract and presumably format into some other data
type. Here'sasimple example:

[1: CO2:1string.cpp
/1 1Input strstreans
#i ncl ude <i ostreanp
#i ncl ude <strstreanr
usi ng nanmespace std;

int main() {
istrstreams("47 1.414 This is a test");
int i;
float f;
s > i > f; /] \Wiitespace-delimted input
char buf 2[100];

s >> huf 2;

cout << "i =" << << ", f =" << f;

cout << " buf2 =" << buf2 << endl;

cout << s.rdbuf(); // Get the rest...
Y I~

Y ou can see that thisis amore flexible and general approach to transforming character strings
to typed values than the Standard C Library functions like atof(), atoi(), and so on.

The compiler handles the static storage allocation of the string in
istrstreams("47 1.414 This is a test");
You can aso hand it a pointer to a zero-terminated string allocated on the stack or the heap.

Ins>>i >>f, thefirst number is extracted into i and the second into f. Thisisn’t “the first
whitespace-delimited set of characters’ because it depends on the data type it's being
extracted into. For example, if the string wereinstead, “1.414 47 Thisisatest,” then i would
get the value one because the input routine would stop at the decimal point. Then f would get
0.414. This could be useful if you want to break a floating-point number into a whole number
and afraction part. Otherwise it would seem to be an error.

Asyou may already have guessed, buf2 doesn't get the rest of the string, just the next
whitespace-delimited word. In general, it seems the best place to use the extractor in
iostreams is when you know the exact sequence of data in the input stream and you're
converting to some type other than a character string. However, if you want to extract the rest
of the string all at once and send it to another iostream, you can use rdbuf(') as shown.

Chapter 14: Templates & Container Classes
82

Output strstreams

Output strstreams also allow you to provide your own storage; in this caseit’sthe placein
memory the bytes are formatted into. The appropriate constructor is

| ostrstream:ostrstream(char*, int, int = ios::out);

Thefirst argument is the preallocated buffer where the characters will end up, the second is
the size of the buffer, and the third is the mode. If the mode is |eft as the default, characters
are formatted into the starting address of the buffer. If the mode is either ios::ate or ios::app
(same effect), the character buffer is assumed to already contain a zero-terminated string, and
any new characters are added starting at the zero terminator.

The second constructor argument is the size of the array and is used by the object to ensure it
doesn’t overwrite the end of the array. If you fill the array up and try to add more bytes, they
won't go in.

An important thing to remember about ostr streamsis that the zero terminator you normally
need at the end of a character array is not inserted for you. When you're ready to zero-
terminate the string, use the special manipulator ends.

Once you' ve created an ostr stream you can insert anything you want, and it will magically
end up formatted in the memory buffer. Here's an example:

//: CO02:Cstring.cpp
/1 Qutput strstreans
#i ncl ude <i ostreanp
#i ncl ude <strstreane
usi ng namespace std;

int main() {
const int sz = 100;
cout << "type an int, a float and a string:";
int i;
float f;
cin >> i > f;
cin >> ws; // Throw away white space
char buf[sz];
cin.getline(buf, sz); // Get rest of the |ine
/1 (cin.rdbuf() would be awkwar d)
ostrstream os(buf, sz, ios::app);

0s << endl;
0s << "integer =" << i << endl;
0s << "float =" << f << endl;

0s << ends;
cout << buf;
cout << os.rdbuf(); // Same effect

Chapter 14: Templates & Container Classes
83

cout << os.rdbuf(); // NOT the same effect
Y I~

Thisis similar to the previous example in fetching theint and float. Y ou might think the
logical way to get the rest of the lineisto use rdbuf(); thisworks, but it’s awkward because
all the input including newlinesis collected until the user presses control-Z (control-D on
Unix) to indicate the end of the input. The approach shown, using getline(), gets the input
until the user presses the carriage return. Thisinput is fetched into buf, which is subsequently
used to construct the ostrstream os. If the third argument ios::app weren't supplied, the
constructor would default to writing at the beginning of buf, overwriting the line that was just
collected. However, the “append” flag causesit to put the rest of the formatted information at
the end of the string.

Y ou can see that, like the other output streams, you can use the ordinary formatting tools for
sending bytes to the ostrstream. The only differenceis that you' re responsible for inserting
the zero at the end with ends. Note that endl inserts a newline in the strstream, but no zero.

Now the information is formatted in buf, and you can send it out directly with cout << buf.
However, it's also possible to send the information out with os.rdbuf(). When you do this,
the get pointer inside the streambuf is moved forward as the characters are output. For this
reason, if you say cout << os.rdbuf() a second time, nothing happens — the get pointer is
already at the end.

Automatic storage allocation

Output strstreams (but not istrstreams) give you a second option for memory allocation: they
can do it themselves. All you do is create an ostr stream with no constructor arguments:

| ostrstream a;

Now a takes care of all its own storage allocation on the heap. Y ou can put as many bytes into
a asyou want, and if it runs out of storage, it will allocate more, moving the block of memory,
if necessary.

Thisisavery nice solution if you don’t know how much space you' Il need, becauseit’'s
completely flexible. And if you simply format data into the strstream and then hand its
streambuf off to another iostream, things work perfectly:

a << "hello, world. i = << | << endl << ends;
cout << a.rdbuf();

Thisisthe best of all possible solutions. But what happens if you want the physical address of
the memory that a's characters have been formatted into? It’s readily available — you simply
call the str() member function:

| char* cp = a.str();

There' saproblem now. What if you want to put more charactersinto a? It would be OK if
you knew a had aready allocated enough storage for all the characters you want to give it, but

Chapter 14: Templates & Container Classes
84

that’s not true. Generally, a will run out of storage when you give it more characters, and
ordinarily it would try to allocate more storage on the heap. This would usually require
moving the block of memory. But the stream objects has just handed you the address of its
memory block, so it can’t very well move that block, because you're expecting it to be at a
particular location.

The way an ostr stream handles this problem is by “freezing” itself. Aslong as you don't use
str() to ask for the internal char*, you can add as many characters as you want to the
ostrstream. It will allocate all the necessary storage from the heap, and when the object goes
out of scope, that heap storage is automatically released.

However, if you cal str(), the ostrstream becomes “frozen.” Y ou can’t add any more
charactersto it. Rather, you aren't supposed to — implementations are not required to detect
the error. Adding characters to a frozen ostr str eam results in undefined behavior. In addition,
the ostrstream is no longer responsible for cleaning up the storage. Y ou took over that
responsibility when you asked for the char* with str().

To prevent amemory leak, the storage must be cleaned up somehow. There are two
approaches. The more common one isto directly release the memory when you're done. To
understand this, you need a sneak preview of two new keywordsin C++: new and delete. As
you'll seein Chapter XX, these do quite a bit, but for now you can think of them as
replacements for malloc() and free() in C. The operator new returns a chunk of memory, and
delete freesit. It'simportant to know about them here because virtually all memory allocation
in C++ is performed with new, and thisis also true with ostr stream. If it's allocated with
new, it must be released with delete, so if you have an ostrstream a and you get the char*
using str(), the typical way to clean up the storageis

| delete [Ja.str():

This satisfies most needs, but there’ s a second, much |ess common way to release the storage:
Y ou can unfreeze the ostr stream. Y ou do this by calling freeze(), which is amember
function of the ostrstream’s streambuf. freeze() has a default argument of one, which
freezes the stream, but an argument of zero will unfreezeit:

a. rdbuf ()->freeze(0);

Now the storage is deallocated when a goes out of scope and its destructor is called. In
addition, you can add more bytesto a. However, this may cause the storage to move, so you
better not use any pointer you previously got by calling str () —it won't be reliable after
adding more characters.

The following example tests the ability to add more characters after a stream has been
unfrozen:

[1: CO2:\Wal rus. cpp

/1 Freezing a strstream
#i ncl ude <i ostreanp

#i ncl ude <strstreanr

usi ng nanmespace std;

Chapter 14: Templates & Container Classes
85

int main() {
ostrstreams;
s << "'The time has cone', the walrus said,";
s << ends;
cout << s.str() << endl; // String is frozen
/1 s is frozen; destructor won't delete
/1 the streanbuf storage on the heap
s.seekp(-1, ios::cur); // Back up before NULL
s.rdbuf ()->freeze(0); // Unfreeze it
/1 Now destructor rel eases nmenory, and
/1 you can add nmore characters (but you
/1 better not use the previous str() val ue)
s << " 'To speak of many things << ends;
cout << s.rdbuf();

Y I~

After putting the first string into s, an endsis added so the string can be printed using the
char* produced by str(). At that point, sisfrozen. We want to add more charactersto s, but
for it to have any effect, the put pointer must be backed up one so the next character is placed
on top of the zero inserted by ends. (Otherwise the string would be printed only up to the
original zero.) Thisis accomplished with seekp(). Then sis unfrozen by fetching the
underlying streambuf pointer using rdbuf() and calling freeze(0). At this point sislike it
was before calling str(): We can add more characters, and cleanup will occur automatically,
with the destructor.

It is possible to unfreeze an ostr stream and continue adding characters, but it is not common
practice. Normally, if you want to add more characters once you’ ve gotten the char* of a
ostrstream, you create a new one, pour the old stream into the new one using rdbuf() and
continue adding new characters to the new ostr stream.

Proving movement

If you're still not convinced you should be responsible for the storage of a ostrstream if you
call str(), here’s an example that demonstrates the storage location is moved, therefore the
old pointer returned by str() isinvalid:

/1: CO02: Strnove. cpp

/1 ostrstream nmenory novenent
#i ncl ude <i ostreanp

#i ncl ude <strstreans

usi ng namespace std;

int main() {
ostrstreams;
s << "hi";

Chapter 14: Templates & Container Classes
86

char* old = s.str(); // Freezes s
s. rdbuf ()->freeze(0); // Unfreeze
for(int i =0; i < 100; i++)
s << "howdy"; // Should force reallocation
cout << "old =" << (void*)old << endl
cout << "new = " << (void*)s.str(): // Freezes
delete s.str(); // Release storage
Y I~

After inserting a string to s and capturing the char* with str (), the string is unfrozen and
enough new bytes are inserted to virtually assure the memory is reallocated and most likely
moved. After printing out the old and new char* values, the storage is explicitly released with
delete because the second call to str() froze the string again.

To print out addresses instead of the strings they point to, you must cast the char* to avoid*.
The operator << for char* prints out the string it is pointing to, while the operator << for
void* prints out the hex representation of the pointer.

It'sinteresting to note that if you don't insert a string to s before calling str(), the result is
zero. This means no storage is allocated until the first time you try to insert bytesto the
ostrstream.

A better way

Again, remember that this section was only left in to support legacy code. Y ou should always
use string and stringstream rather than character arrays and strstream. The former is much
safer and easier to use and will help ensure your projects get finished faster.

Output stream formatting

The whole goal of this effort, and all these different types of iostreams, isto alow you to
easily move and trand ate bytes from one place to another. It certainly wouldn't be very useful
if you couldn’t do all the formatting with the printf() family of functions. In this section,
you'll learn all the output formatting functions that are available for iostreams, so you can get
your bytes the way you want them.

The formatting functionsin iostreams can be somewhat confusing at first because there's
often more than one way to control the formatting: through both member functions and
manipulators. To further confuse things, there is a generic member function to set state flags
to control formatting, such as left- or right-justification, whether to use uppercase |etters for
hex notation, whether to always use adecimal point for floating-point values, and so on. On
the other hand, there are specific member functions to set and read values for the fill
character, the field width, and the precision.

Chapter 14: Templates & Container Classes
87

In an attempt to clarify all this, the internal formatting data of an iostream is examined first,
along with the member functions that can modify that data. (Everything can be controlled
through the member functions.) The manipulators are covered separately.

Internal formatting data

The class ios (which you can see in the header file <iostream>) contains data members to
store al the formatting data pertaining to that stream. Some of this data has a range of values
and is stored in variables: the floating-point precision, the output field width, and the
character used to pad the output (normally a space). The rest of the formatting is determined
by flags, which are usually combined to save space and are referred to collectively asthe
format flags. Y ou can find out the value of the format flags with theios::flags() member
function, which takes no arguments and returns along (typedefed to fmtflags) that contains
the current format flags. All the rest of the functions make changes to the format flags and
return the previous value of the format flags.

fntflags ios::flags(fmflags newfl ags);
fntflags ios::setf(fnmflags ored_flag);
fntflags ios::unsetf(fntflags clear_flag);

fnflags ios::setf(fmflags bits, fntflags field);

Thefirst function forces all the flags to change, which you do sometimes. More often, you
change one flag at atime using the remaining three functions.

The use of setf() can seem more confusing: To know which overloaded version to use, you
must know what type of flag you' re changing. There are two types of flags: onesthat are
simply on or off, and ones that work in a group with other flags. The on/off flags are the
simplest to understand because you turn them on with setf(fmtflags) and off with
unsetf(fmtflags). These flags are

on/off flag effect

i0s::skipws Skip white space. (For input; thisis the
default.)

ios::showbase Indicate the numeric base (dec, oct, or

hex) when printing an integral value.
The format used can be read by the
C++ compiler.

i0s::showpoint Show decimal point and trailing zeros
for floating-point values.

Chapter 14: Templates & Container Classes
88

on/off flag

effect

i0s::uppercase

Display uppercase A-F for
hexadecimal values and E for scientific
values.

ios::showpos

Show plus sign (+) for positive values.

ios::unitbuf

“Unit buffering.” The streamis flushed
after each insertion.

ios::stdio

Synchronizes the stream with the C
standard 1/0 system.

For example, to show the plus sign for cout, you say cout.setf(ios::showpos). To stop
showing the plus sign, you say cout.unsetf(ios:: showpos).

The last two flags deserve some explanation. Y ou turn on unit buffering when you want to
make sure each character is output as soon asit isinserted into an output stream. Y ou could
also use unbuffered output, but unit buffering provides better performance.

Theios::stdio flag is used when you have a program that uses both iostreams and the C
standard 1/0O library (not unlikely if you're using C libraries). If you discover your iostream
output and printf() output are occurring in the wrong order, try setting this flag.

Format fields

The second type of formatting flags work in a group. Y ou can have only one of these flags on
at atime, like the buttons on old car radios — you push onein, the rest pop out. Unfortunately
this doesn’t happen automatically, and you have to pay attention to what flags you' re setting
so you don't accidentally call the wrong setf() function. For example, there’saflag for each
of the number bases. hexadecimal, decimal, and octal. Collectively, these flags are referred to
astheios::basefield. If theios::dec flag is set and you call setf(ios::hex), you'll set the
ios::hex flag, but you won't clear the ios::dec bit, resulting in undefined behavior. The proper
thing to do is call the second form of setf() like this: setf(ios::hex, ios::basefield). This
function first clears all the bitsin theios::basefield, then setsios::hex. Thus, this form of
setf(') ensuresthat the other flagsin the group “pop out” whenever you set one. Of course, the
hex() manipulator does all this for you, automatically, so you don’t have to concern yourself
with the internal details of the implementation of this class or to even care that it's a set of
binary flags. Later you'll see there are manipulators to provide equivalent functionality in all

the places you would use setf().

Here are the flag groups and their effects:

ios::basefield

effect

Chapter 14: Templates & Container Classes
89

ios::basefield

effect

ios::dec Format integral valuesin base 10
(decimal) (default radix).

ios::hex Format integral valuesin base 16
(hexadecimal).

ios::oct Format integral valuesin base 8
(octdl).

ios::floatfield effect

ios::scientific Display floating-point numbersin
scientific format. Precision field
indicates number of digits after the
decimal point.

ios::fixed Display floating-point numbersin

fixed format. Precision field
indicates number of digits after the
decimal point.

“automatic” (Neither bit
isset.)

Precision field indicates the total
number of significant digits.

ios.:adjustfield

effect

ios::left Left-align values; pad on the right
with thefill character.

ios::right Right-align values. Pad on the left
with thefill character. Thisisthe
default alignment.

ios::internal Add fill characters after any leading

sign or base indicator, but before
the value.

Chapter 14: Templates & Container Classes
Q0

Width, fill and precision

Theinternal variables that control the width of the output field, the fill character used when
the data doesn't fill the output field, and the precision for printing floating-point numbers are

read and written by member functions of the same name.

function

effect

int ios::width()

Reads the current width. (Default is
0.) Used for both insertion and
extraction.

int ios::width(int n)

Sets the width, returns the previous
width.

intios:fill()

Reads the current fill character.
(Default is space.)

int ios::fill(int n)

Setsthefill character, returns the
previousfill character.

int ios::precision()

Reads current floating-point
precision. (Default is6.)

int ios::precision(int n)

Sets floating-point precision,
returns previous precision. See
ios::floatfield table for the meaning
of “precision.”

Thefill and precision values are fairly straightforward, but width requires some explanation.
When the width is zero, inserting avalue will produce the minimum number of characters
necessary to represent that value. A positive width means that inserting a value will produce
at least as many characters as the width; if the value has less than width characters, the fill
character is used to pad the field. However, the value will never be truncated, so if you try to
print 123 with awidth of two, you'll still get 123. The field width specifies a minimum
number of characters; there's no way to specify a maximum number.

Thewidth isalso distinctly different because it’s reset to zero by each inserter or extractor
that could be influenced by its value. It'sreally not a state variable, but an implicit argument
to the inserters and extractors. If you want to have a constant width, you have to call width()

after each insertion or extraction.

Chapter 14: Templates & Container Classes
91

An exhaustive example

To make sure you know how to call al the functions previoudly discussed, here's an example
that calls them all:

/1: CO2: Format. cpp

/1 Formatting functions

#i ncl ude <fstreanr

usi ng nanmespace std;

#define D(A) T << #A << endl; A
of stream T("format.out");

int main() {

Dint i = 47;)
D(float f = 2300114. 414159;)
char* s = "ls there any nore?";

X T.setf(ios::unitbuf);)
/1 D(T.setf(ios::stdio);) // SOVETH NG MAY HAVE CHANGED

X T.setf(ios::showbase);)

X T.setf(ios::uppercase);)

X T.setf(ios::showpos);)

T <<i << endl;) // Default to dec

DX T.setf(ios::hex, ios::basefield);)
DT << i << endl;)

D T.unsetf (i os::uppercase);)
D(T.setf(ios::oct, ios::basefield);)
DT << i << endl;)

D T.unsetf (i os::showbase);)

X T.setf(ios::dec, ios::basefield);)

DX T.setf(ios::left, ios::adjustfield);)
D(T.fill("'0);)

D(T << "fill char: " << T.fill() << endl;)
D(T.w dt h(10);)

T << i << endl;

X T.setf(ios::right, ios::adjustfield);)
D(T.w dt h(10);)

T << i << endl;

X T.setf(ios::internal, ios::adjustfield);)
D(T.w dt h(10);)

T << i << endl;

D(T << i << endl;) // Wthout wi dth(10)

Chapter 14: Templates & Container Classes
92

D(T.unsetf (i os::showpos);)

D T.setf(ios::showpoint);)

D(T << "prec =" << T.precision() << endl;)
DX T.setf(ios::scientific, ios::floatfield);)
T << endl << f << endl;)
D(T.setf(ios::fixed, ios::floatfield);)

T << f << endl;)

DXT.setf(0, ios::floatfield);) // Automatic
T << f << endl;)

D T. precision(20);)

D(T << "prec =" << T.precision() << endl;)
T << endl << f << endl;)
D(T.setf(ios::scientific, ios::floatfield);)
T << endl << f << endl;)
D(T.setf(ios::fixed, ios::floatfield);)

T << f << endl;)

D(T.setf(0, ios::floatfield);) // Automatic
T << f << endl;)

D(T.w dth(10);)
T << s << endl;
D(T.w dt h(40);)
T << s << endl;
D(T.setf(ios::left, ios::adjustfield);)
D(T.w dt h(40);)
T << s << endl;

D(T.unsetf (i os::showpoint);)

D(T.unsetf(ios::unitbuf);)
/1 D(T.unsetf(ios::stdio);) // SOVETH NG MAY HAVE CHANGED
Y I~

This example uses atrick to create atrace file so you can monitor what’s happening. The
macro D(a) uses the preprocessor “stringizing” to turn a into a string to print out. Then it
reiterates a so the statement takes effect. The macro sends all the information out to afile
called T, which isthe trace file. The output is

int i = 47,

float f = 2300114.414159;

T.setf(ios::unitbuf);

T.setf(ios::stdio);

T.setf (i os::showbase);

T.setf (i os::uppercase);

Chapter 14: Templates & Container Classes
93

T.setf (i os::showos);

T << i << endl

+47

T.setf(ios::hex, ios::basefield);

T << i << endl

+0X2F

T.unsetf (i os:: uppercase);
T.setf(ios::oct, ios::basefield);

T << i << endl

+057

T.unsetf (i os::showbase);
T.setf(ios::dec, ios::basefield);
T.setf(ios::left, ios::adjustfield);
T.fill("0");

T << "fill char: " << T.fill() << endl
fill char: O

T.wi dt h(10);

+470000000

T.setf(ios::right, ios::adjustfield);
T.wi dt h(10);

0000000+47

T.setf(ios::internal, ios::adjustfield);
T.wi dt h(10);

+000000047

T << i << endl

+47

T.unsetf (i 0s::showpos);

T.setf (i os::showpoint);

T << "prec = " << T.precision() << endl
prec = 6

T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl

2.300115e+06

T.setf(ios::fixed, ios::floatfield);

T << f << endl

2300114. 500000

T.setf(0, ios::floatfield);

T << f << endl

2.300115e+06

T. preci sion(20);

T << "prec = " << T.precision() << endl
prec = 20

Chapter 14: Templates & Container Classes
9%

T << endl << f << endl;

2300114. 50000000020000000000
T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl;

2.30011450000000020000e+06
T.setf(ios::fixed, ios::floatfield);

T << f << endl;

2300114. 50000000020000000000

T.setf(0, ios::floatfield);

T << f << endl;

2300114. 50000000020000000000

T.wi dt h(10);

I's there any nore?

T. wi dt h(40);

00000000000000000000001 s there any nore?
T.setf(ios::left, ios::adjustfield);

T. wi dt h(40);

I's there any nore?0000000000000000000000
T.unsetf (i os::showpoint);

T.unsetf (ios::unitbuf);
T.unsetf(ios::stdio);

Studying this output should clarify your understanding of the iostream formatting member
functions.

Formatting manipulators

Asyou can see from the previous example, calling the member functions can get a bit tedious.
To make things easier to read and write, a set of manipulatorsis supplied to duplicate the
actions provided by the member functions.

M anipulators with no arguments are provided in <iostream>. These include dec, oct, and
hex , which perform the same action as, respectively, setf(ios::dec, ios::basefield),
setf(ios::oct, ios.:basefield), and setf(ios::hex, ios::basefield), abeit more succinctly.
<iostream>8 also includes ws, end|, ends, and flush and the additional set shown here:

8 These only appear in the revised library; you won't find them in older implementations of
iostreams.

Chapter 14: Templates & Container Classes

95

manipulator effect

showbase Indicate the numeric base (dec,

noshowbase oct, or hex) when printing an
integral value. The format used
can be read by the C++
compiler.

showpos Show plus sign (+) for positive

noshowpos values

uppercase Display uppercase A-F for

nouppercase hexadecimal values, and E for
scientific values

showpoint Show decimal point and trailing

noshowpoint zeros for floating-point values.

skipws Skip white space on input.

noskipws

left Left-align, pad onright.

right Right-align, pad on left.

internal Fill between leading sign or base
indicator and value.

scientific Use scientific notation

fixed setprecision() or
ios::precision() sets number of
places after the decimal point.

Manipulators with arguments

If you are using manipulators with arguments, you must also include the header file
<iomanip>. This contains code to solve the general problem of creating manipulators with
arguments. In addition, it has six predefined manipulators:

manipulator effect

Chapter 14: Templates & Container Classes
96

manipulator

effect

setiosflags (Fmtflags n)

Sets only the format flags
specified by n. Setting remains
in effect until the next change,
likeios::setf().

resetiosflags(fmtflags n)

Clears only the format flags
specified by n. Setting remains
in effect until the next change,
likeios::unsetf().

setbase(base n)

Changes baseto n, where nis
10, 8, or 16. (Anything else
resultsin 0.) If niszero, output
isbase 10, but input uses the C
conventions: 10 is 10, 010is 8,
and Oxf is 15. Y ou might as well
use dec, oct, and hex for output.

setfill (char n)

Changes thefill character to n,
likeios::fill().

setprecision(int n)

Changes the precision to n, like
ios::precision().

setw(int n)

Changes the field width to n,
likeios::width().

If you're using alot of inserters, you can see how this can clean things up. As an example,
here' s the previous program rewritten to use the manipulators. (The macro has been removed

to make it easier to read.)

[1: CO2: Mani ps. cpp

/1 Format.cpp using mani pul ators
#i ncl ude <fstreanr

#i ncl ude <i omani p>

usi ng nanmespace std;

int main() {
of streamtrc("trace.out");
int i = 47,
float f = 2300114. 414159;

Chapter 14: Templates & Container Classes
97

char* s = "lIs there any nore?";

trc << setiosflags(
ios::unitbuf /*| ios::stdio */ [/] 2?2?2277
| io0s::showbase | ios::uppercase
| i1os::showpos);
trc << i << endl; // Default to dec
trc << hex << i << endl
trc << resetiosflags(ios::uppercase)
<< oct << i << endl
trc.setf(ios::left, ios::adjustfield);
trc << resetiosflags(ios::showbase)
<< dec << setfill('0");
trc << "fill char: " << trc.fill() << endl
trc << setw(10) << i << endl
trc.setf(ios::right, ios::adjustfield);
trc << setw(10) << i << endl
trc.setf(ios::internal, ios::adjustfield);
trc << setw(10) << i << endl
trc << i << endl; // Wthout setw(10)

trc << resetiosflags(ios::showpos)

<< setiosflags(ios::showpoint)

<< "prec = " << trc.precision() << endl
trc.setf(ios::scientific, ios::floatfield);
trc << f << endl
trc.setf(ios::fixed, ios::floatfield);
trc << f << endl
trc.setf(0, ios::floatfield); // Automatic
trc << f << endl
trc << setprecision(20);
trc << "prec = " << trc.precision() << endl
trc << f << endl
trc.setf(ios::scientific, ios::floatfield);
trc << f << endl
trc.setf(ios::fixed, ios::floatfield);
trc << f << endl
trc.setf(0, ios::floatfield); // Automatic
trc << f << endl

trc << setw(10) << s << endl
trc << setw(40) << s << endl
trc.setf(ios::left, ios::adjustfield);

Chapter 14: Templates & Container Classes
98

trc << setw(40) << s << endl;

trc << resetiosflags(
i 0S::showpoint | ios::unitbuf
[l | ios::stdio /] ?2?2?2?2?2?27?°??
)
Y I~

Y ou can see that alot of the multiple statements have been condensed into a single chained
insertion. Note the calls to setiosflags() and resetiosflags(), where the flags have been
bitwise-ORed together. This could also have been done with setf() and unsetf() in the
previous example.

Creating manipulators

(Note: This section contains some material that will not be introduced until later chapters.)
Sometimes you'd like to create your own manipulators, and it turns out to be remarkably
simple. A zero-argument manipulator like endl is ssmply afunction that takes as its argument
an ostream reference (references are a different way to pass arguments, discussed in Chapter
XX). The declaration for endl is

| ostream& endl (ostreanms);
Now, when you say:
| cout << “howdy” << endl;

the endl produces the address of that function. So the compiler says “is there afunction | can
call that takes the address of afunction asits argument?’ Thereis a pre-defined function in
lostream.h to do this; it's called an applicator. The applicator calls the function, passing it
the ostr eam object as an argument.

Y ou don't need to know how the applicator works to create your own manipulator; you only
need to know the applicator exists. Here's an example that creates a manipulator called nl that
emits a newline without flushing the stream:

/1: CO02:nl.cpp

/1 Creating a mani pul at or
#i ncl ude <i ostreanp

usi ng namespace std;

ostream& nl (ostream& os) {
return os << '\n';

}

int main() {

Chapter 14: Templates & Container Classes
99

cout << "new ines" << nl << "between" << nl
<< "each" << nl << "word" << nl;
Y I~

The expression
| 0s << '\n':
calls afunction that returns os, which iswhat is returned from nl.®

People often argue that the nl approach shown above is preferable to using endl because the
latter always flushes the output stream, which may incur a performance penalty.

Effectors

As you' ve seen, zero-argument manipulators are quite easy to create. But what if you want to
create a manipulator that takes arguments? The iostream library has a rather convoluted and
confusing way to do this, but Jerry Schwarz, the creator of the iostream library, suggestst a
scheme he calls effectors. An effector is a simple class whose constructor performs the desired
operation, along with an overloaded oper ator << that works with the class. Here's an example
with two effectors. The first outputs a truncated character string, and the second prints a
number in binary (the process of defining an overloaded oper ator << will not be discussed
until Chapter XX):

/]: C02:Effector.txt

/1 (Should be "cpp" but | can't get it to compile with
/1 My windows conpilers, so making it a txt file wll
/1 keep it out of the makefile for the time being)

/1 Jerry Schwarz's "effectors”

#i ncl ude<i ost reanr

#i ncl ude <cstdlib>

#i ncl ude <string>

#include <climts> // ULONG MAX

usi ng namespace std;

/1 Put out a portion of a string:
class Fixw {

string str;
public:

Fi xw(const string& s, int wdth)

9 Before putting nl into a header file, you should make it an inline function (see Chapter 7).

10 |n a private conversation.

Chapter 14: Templates & Container Classes
100

str(s, 0, width) {}
friend ostream&
operator<<(ostrean& os, Fixw& fw) {
return os << fw str;
}

b
t ypedef unsigned | ong ul ong;

/1 Print a nunber in binary:
class Bin {
ul ong n;
public:
Bin(ulong nn) { n = nn; }
friend ostream& operator<<(ostream& Bin&);

}s

ost ream& oper at or<<(ostream& os, Bin& b) {
ulong bit = ~(ULONG MAX >> 1); // Top bit set
while(bit) {
0s << (b.n & bit ?2'1'" : '0");
bit >>= 1;
}

return os;

}

int main() {
char* string =
"Thi ngs that nmake us happy, nake us w se";
for(int i = 1; i <= strlen(string); i++)
cout << Fixw(string, i) << endl;
ul ong x = OxCAFEBABEUL;
ulong y = 0x76543210UL;

cout << "x in binary: " << Bin(x) << endl;
cout << "y in binary: " << Bin(y) << endl;
Y I~

The constructor for Fixw creates a shortened copy of its char* argument, and the destructor
releases the memory created for this copy. The overloaded oper ator << takes the contents of
its second argument, the Fixw object, and insertsit into the first argument, the ostream, then
returns the ostream so it can be used in a chained expression. When you use Fixw in an
expression like this:

cout << Fixw(string, i) << endl;

Chapter 14: Templates & Container Classes
101

atemporary object is created by the call to the Fixw constructor, and that temporary is passed
to oper ator <<. The effect isthat of a manipulator with arguments.

The Bin effector relies on the fact that shifting an unsigned number to the right shifts zeros
into the high bits. ULONG_MAX (the largest unsigned long value, from the standard include
file <climits>) is used to produce a value with the high bit set, and this value is moved across
the number in question (by shifting it), masking each bit.

Initially the problem with this technique was that once you created a class called Fixw for
char* or Bin for unsigned long, no one else could create a different Fixw or Bin class for
their type. However, with namespaces (covered in Chapter XX), this problemis eliminated.

| ostream examples

In this section you' Il see some examples of what you can do with all the information you' ve
learned in this chapter. Although many tools exist to manipulate bytes (stream editors like sed
and awk from Unix are perhaps the most well known, but atext editor also fits this category),
they generally have some limitations. sed and awk can be sow and can only handlelinesin a
forward sequence, and text editors usually require human interaction, or at least learning a
proprietary macro language. The programs you write with iostreams have none of these
limitations: They're fast, portable, and flexible. It's avery useful tool to have in your Kit.

Code generation

The first examples concern the generation of programs that, coincidentally, fit the format used
in this book. This provides a little extra speed and consistency when developing code. The
first program creates afile to hold main() (assuming it takes no command-line arguments and
uses the iostream library):

/1: CO02: Makenmi n. cpp

/1l Create a shell main() file
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <strstreans

#i ncl ude <cstring>

#i ncl ude <cctype>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
of stream mai nfil e(argv[1]);
assure(mainfile, argv[1]);
i strstream name(argv|[1]);
ost rstream CAPnane;

Chapter 14: Templates & Container Classes
102

char c;
whi | e(nane. get (c))

CAPnanme << char (toupper(c));
CAPnanme << ends;

mainfile << "//" << ": " << CAPnane. rdbuf ()
<< " -- " << endl
<< "#include <iostreanr" << endl
<< endl

<< "main() {" << endl << endl
<< "}" << endl;
YL~

The argument on the command line is used to create an istrstream, so the characters can be
extracted one at atime and converted to upper case with the Standard C library macro
toupper (). Thisreturnsan int so it must be explicitly cast to achar. This name isused in the
headline, followed by the remainder of the generated file.

Maintaining class library source

The second example performs a more complex and useful task. Generally, when you create a
classyou think in library terms, and make a header file Name.h for the class declaration and a
file where the member functions are implemented, called Name.cpp. These files have certain
requirements: a particular coding standard (the program shown here will use the coding
format for this book), and in the header file the declarations are generally surrounded by some
preprocessor statements to prevent multiple declarations of classes. (Multiple declarations
confuse the compiler — it doesn’t know which one you want to use. They could be different,

so it throws up its hands and gives an error message.)

This example allows you to create a new header-implementation pair of files, or to modify an
existing pair. If the files already exist, it checks and potentially modifies the files, but if they
don't exist, it creates them using the proper format.

[[This should be changed to use string instead of <cstring>]]

/1: C02: Cppcheck. cpp

/1 Configures .h & .cpp files

/1 To conformto style standard.

/1 Tests existing files for confornmance
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <strstreans

#i ncl ude <cstring>

#i ncl ude <cctype>

usi ng namespace std;

int main(int argc, char* argv[]) {

Chapter 14: Templates & Container Classes
103

const int sz = 40; // Buffer sizes

const int bsz = 100;

requireArgs(argc, 1); // File set nane

enum bufs { base, header, inplenent,
H i nel, guardl, guard2, guards3,
CPPl i nel, include, bufnum}

char b[bufnunm[sz];

ostrstreamosarray[] = {
ostrstrean(b[base], sz),
ostrstrean(b[header], sz),
ostrstrean(b[inplenment], sz),
ostrstream(b[H i nel], sz),
ostrstreanm(b[guardl], sz),
ostrstreanm(b[guard2], sz),
ostrstream(b[guard3], sz),
ostrstrean(b[CPPlinel], sz),
ostrstrean(b[include], sz),

b

osarray[base] << argv[1l] << ends;

/1 Find any '." in the string using the
/1 Standard C library function strchr():
char* period = strchr(b[base], '.");

i f(period) *period = 0; // Strip extension
/1l Force to upper case:

for(int i = 0; b[base][i]; i++)
b[base][i] = toupper(b[base][i]);
/!l Create file nanmes and internal |ines:

osarray[header] << b[base] << ".h" << ends;
osarray[i npl enment] << b[base] << ".cpp" << ends;
osarray[H inel] << "//" << ": " << b[header]
<< " -- " << ends;
osarray[guardl] << "#i fndef " << b[base]
<< " H' << ends;
osarray[guard2] << "#define " << b[base]
<< " H' << ends;
osarray[guard3] << "#endif // " << b[base]
<< " H' << ends;
osarray[CPPlinel] << "//" << "
<< b[i npl enment]
<< " -- " << ends;
osarray[include] << "#include \""
<< b[header] << "\"" <<ends;
/1 First, try to open existing files:

Chapter 14: Templates & Container Classes
104

i fstream exi st h(b[header]),
exi stcpp(b[inplenment]);
if('existh) { // Doesn't exist; create it
of stream newheader (b[header]);
assur e(newheader, b[header]);
newheader << b[H inel] << end
<< b[guardl] << end
<< b[guard2] << endl << end
<< b[guard3] << endl
}
if('existcpp) { // Create cpp file
of stream newcpp(b[i mpl enent]);
assure(newcpp, b[inplenent]);
newcpp << b[CPPlinel] << end
<< b[include] << endl
}
if(existh) { // Aready exists; verify it
strstreamhfile; // Wite & read
ostrstream newheader; // Wite
hfile << existh.rdbuf () << ends;
/1 Check that first line confornmns:
char buf[bsz];
if(hfile.getline(buf, bsz)) {
if(!strstr(buf, "“//" ":") ||
I'strstr(buf, b[header]))
newheader << b[H inel] << endl
}
/1 Ensure guard |ines are in header
if(!strstr(hfile.str(), b[guardl]) ||
Istrstr(hfile.str(), b[guard2]) ||
Istrstr(hfile.str(), b[guard3])) {
newheader << b[guardl] << end
<< b[guard2] << end
<< buf
<< hfile.rdbuf() << end
<< b[guard3] << endl << ends;
} else
newheader << buf
<< hfile.rdbuf() << ends;
/1 1f there were changes, overwite file:
if(strcnp(hfile.str(), newheader.str())!=0){
exi sth.close();
of stream newH(b[header]);

Chapter 14: Templates & Container Classes
105

assure(newH, b[header]);
newH << "//@/" << endl // Change marker
<< newheader . rdbuf () ;
}

delete hfile.str();
del et e newheader.str();
}
if(existcpp) { // Already exists; verify it
strstream cppfil e;
ostrstream newcpp;
cppfil e << existcpp.rdbuf() << ends;
char buf[bsz];
/1 Check that first line confornms:
i f(cppfile.getline(buf, bsz))
if(!strstr(buf, "//" ":") ||
I'strstr(buf, b[inplenent]))
newcpp << b[CPPlinel] << endl
/1 Ensure header is included:
if(!strstr(cppfile.str(), b[include]))
newcpp << b[include] << endl
/1 Put in the rest of the file:
newcpp << buf << endl; // First line read
newcpp << cppfile.rdbuf() << ends;
/1 1f there were changes, overwite file:
if(strcnp(cppfile.str(), newcpp.str())!=0){
exi st cpp. cl ose();
of stream newCPP(b[i nmpl enent]);
assure(newCPP, b[inplenent]);
newCPP << "//@/" << endl // Change narker
<< newcpp. rdbuf ();
}

del ete cppfile.str();
del ete newcpp.str();

}
Y 11~

This example requires alot of string formatting in many different buffers. Rather than

creating alot of individually named buffers and ostr stream objects, asingle set of namesis
created in the enum bufs. Then two arrays are created: an array of character buffers and an
array of ostr stream objects built from those character buffers. Note that in the definition for
the two-dimensional array of char buffers b, the number of char arraysis determined by
bufnum, the last enumerator in bufs. When you create an enumeration, the compiler assigns
integral valuesto all the enum labels starting at zero, so the sole purpose of bufnum isto bea
counter for the number of enumeratorsin buf. The length of each stringinb issz.

Chapter 14: Templates & Container Classes
106

The names in the enumeration are base, the capitalized base file name without extension;
header, the header file name; implement, the implementation file (cpp) name; Hlinel, the
skeleton first line of the header file; guardl, guard2, and guard3, the “guard” linesin the
header file (to prevent multiple inclusion); CPPlinel, the skeleton first line of the cpp file;
and include, thelinein the cpp file that includes the header file.

osarray isan array of ostrstream objects created using aggregate initialization and automatic
counting. Of course, thisis the form of the ostrstream constructor that takes two arguments
(the buffer address and buffer size), so the constructor calls must be formed accordingly
inside the aggregate initializer list. Using the bufs enumerators, the appropriate array element
of b istied to the corresponding osarray object. Once the array is created, the objectsin the
array can be selected using the enumerators, and the effect is to fill the corresponding b
element. Y ou can see how each string is built in the lines following the ostr stream array
definition.

Once the strings have been created, the program attempts to open existing versions of both the
header and cpp file asifstreams. If you test the object using the operator ‘!" and thefile
doesn’t exist, the test will fail. If the header or implementation file doesn’t exist, it is created
using the appropriate lines of text built earlier.

If the files do exist, then they are verified to ensure the proper format is followed. In both
cases, astrstream is created and the whole file isread in; then the first line isread and
checked to make sure it follows the format by seeing if it contains both a“//:” and the name of
thefile. Thisis accomplished with the Standard C library function strstr(). If the first line
doesn’t conform, the one created earlier isinserted into an ostr stream that has been created to
hold the edited file.

In the header file, the wholefile is searched (again using strstr()) to ensure it contains the
three “guard” lines; if not, they are inserted. The implementation file is checked for the
existence of the line that includes the header file (although the compiler effectively guarantees
its existence).

In both cases, the original file (in its strstream) and the edited file (in the ostr stream) are
compared to seeif there are any changes. If there are, the existing file is closed, and a new
ofstream object is created to overwrite it. The ostrstream is output to the file after a special
change marker is added at the beginning, so you can use a text search program to rapidly find
any files that need reviewing to make additional changes.

Detecting compiler errors

All the code in this book is designed to compile as shown without errors. Any line of code
that should generate a compile-time error is commented out with the special comment
sequence “//!”. The following program will remove these special comments and append a
numbered comment to the line, so that when you run your compiler it should generate error
messages and you should see all the numbers appear when you compile all the files. It also
appends the modified line to a special file so you can easily locate any lines that don’t
generate errors:

Chapter 14: Templates & Container Classes
107

/1: CO02: Showerr.cpp

/1 Un-conment error generators
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <strstreans

#i ncl ude <cctype>

#i ncl ude <cstring>

usi ng nanmespace std;

char* marker = "//1";

char* usage =

"usage: showerr filenane chapnum n"

"where filename is a C++ source file\n"

"and chapnumis the chapter nane it's in.\n"
"Finds lines conmented with //! and renpves\n"
"comment, appending //(#) where # is unique\n"
"across all files, so you can determ ne\n"

"if your compiler finds the error.\n"

"“showerr /r\n"

"resets the uni que counter.";

/1 File containing error nunber counter

char* errnum="../errnumtxt";
/1 File containing error lines:
char* errfile = "../errlines.txt";

of streamerrlines(errfile,ios::app);

int main(int argc, char* argv[]) {
requi reArgs(argc, 2, usage);
ifCargv[1][0] =="/" || argv[1][0] == "-") {
/1 Allow for other swtches:
switch(argv[1][1]) {
case 'r case 'R :
cout << "reset counter" << endl
renove(errnum; // Delete files
renove(errfile);
return O;
defaul t:
cerr << usage << endl
return 1,

Chapter 14: Templates & Container Classes
108

char* chapter = argv|[2];
strstreamedited; // Edited file
int counter = O;
{
ifstreaminfile(argv[1]);
assure(infile, argv[1]);
i fstream count (errnum;
assure(count, errnum;
i f(count) count >> counter;
int Iinecount = O;
const int sz = 255;
char buf[sz];
while(infile.getline(buf, sz)) {
[i necount ++;
/1 Eat white space:
int i =0;
whi | e(i sspace(buf[i]))
i ++;
/1 Find marker at start of |ine:
if(strstr(&uf[i], marker) == &buf[i]) {
/1 Erase marker:
menset (&uf[i], ' ', strlen(marker));
/1 Append counter & error info:
ostrstream out (buf, sz, ios::ate);
out << "//(" << ++counter << ")
<< "Chapter " << chapter

<< " File: " << argv[1]
<< " Line " << linecount << end
<< ends;

edited << buf;
errlines << buf; // Append error file
} else
edited << buf << "\n"; // Just copy
}

} // Closes files
of streamoutfile(argv[1]); // Overwites
assure(outfile, argv[1]);
outfile << edited. rdbuf();
of stream count(errnun); // Overwites
assure(count, errnum;
count << counter; // Save new counter
Y oI~

Chapter 14: Templates & Container Classes
109

The marker can be replaced with one of your choice.

Eachfileisread aline at atime, and each lineis searched for the marker appearing at the head
of the ling; the line is modified and put into the error line list and into the strstream edited.
When the wholefile is processed, it is closed (by reaching the end of a scope), reopened as an
output file and edited is poured into the file. Also notice the counter is saved in an externa
file, so the next time this program is invoked it continues to sequence the counter.

A simple datalogger

This example shows an approach you might take to log data to disk and later retrieve it for
processing. The example is meant to produce a temperature-depth profile of the ocean at
various points. To hold the data, aclassis used:

//: CO2: Dat aLogger. h

/1 Datal ogger record | ayout
#i f ndef DATALOG H

#defi ne DATALOG H

#i ncl ude <cti me>

#i ncl ude <i ostreanp

cl ass Dat aPoi nt {
std::tmtime; // Tine & day
static const int bsz = 10;
/1 Ascii degrees (*) mnutes (') seconds ("):

char latitude[bsz], |ongitude[bsz];
doubl e depth, tenperature;
publi c:

std::tmgetTime();
void setTinme(std::tmt);
const char* getlLatitude();
voi d setlLatitude(const char* I|);
const char* getlLongitude();
voi d setlLongitude(const char* 1);
doubl e get Dept h();
voi d set Dept h(doubl e d);
doubl e get Tenperature();
voi d set Tenperature(double t);
void print(std::ostream& os);
i
#endi f // DATALOG H ///:~

The access functions provide controlled reading and writing to each of the data members. The
print() function formats the DataPoint in areadable form onto an ostr eam object (the
argument to print()). Here' s the definition file:

Chapter 14: Templates & Container Classes
110

/1: CO02: Datal og.cpp {O

/1 Datapoi nt nember functions
#i ncl ude "Dat alLogger. h"

#i ncl ude <i omani p>

#i ncl ude <cstring>

usi ng namespace std;

tmDataPoint::getTine() { return tine; }
void DataPoint::setTine(tmt) { tine =t; }

const char* DataPoint::getlLatitude() {
return |atitude;
}

voi d DataPoint::setlLatitude(const char* |) {
| atitude[bsz - 1] = O;
strncpy(latitude, |, bsz - 1);

}

const char* Dat aPoi nt::getlLongitude() {
return | ongitude;
}

voi d Dat aPoi nt: :setlLongitude(const char* |) {
| ongi tude[bsz - 1] = O;
strncpy(longitude, |, bsz - 1);

}

doubl e Dat aPoi nt::getDepth() { return depth; }
voi d Dat aPoi nt:: set Dept h(double d) { depth = d;
doubl e Dat aPoi nt:: get Tenperature() {

return tenperature;
}

voi d Dat aPoi nt:: set Tenperature(double t) {
tenmperature =t
}

voi d DataPoint::print(ostream& os) {
os.setf(ios::fixed, ios::floatfield);

Chapter 14: Templates & Container Classes
1m

0s. preci sion(4);

os.fill("0"); // Pad on left with '0'

0s << setw(2) << getTinme().tmnon << "\\'
<< setw(2) << getTine().tmnday << "\\'
<< setwW(2) << getTinme().tmyear << ' '
<< setw(2) << getTinme().tmhour <<'
<< setwW(2) << getTime().tmmn << '
<< setw(2) << getTinme().tmsec;

os.fill(" "); /I Pad on left with '

0S << " Lat:" << setw(9) << getlatitude()
<< ", Long:" << setw(9) << getlLongitude()
<< ", depth:" << setw(9) << getDepth()
<< ", tenp:" << setw(9) << getTenperature()
<< endl;

Y I~

Inprint(), the call to setf() causes the floating-point output to be fixed-precision, and
precision() setsthe number of decimal placesto four.

The default is to right-justify the data within the field. The time information consists of two
digits each for the hours, minutes and seconds, so the width is set to two with setw() in each
case. (Remember that any changes to the field width affect only the next output operation, so
setw() must be given for each output.) But first, to put a zero in the left position if the value is
lessthan 10, the fill character isset to ‘0’. Afterwards, it is set back to a space.

The latitude and longitude are zero-terminated character fields, which hold the information as
degrees (here, ‘** denotes degrees), minutes (*), and seconds(*). Y ou can certainly devise a
more efficient storage layout for latitude and longitude if you desire.

Generating test data

Here's a program that creates afile of test datain binary form (using write()) and a second
filein ASCII form using DataPoint::print(). You can also print it out to the screen but it's
easier to inspect in file form.

/1: CO02: Dat agen. cpp
/1{L} Datal og

/1 Test data generator
#i ncl ude "Dat alLogger. h"
#include "../require. h"
#i ncl ude <fstreanp

#i ncl ude <cstdlib>

#i ncl ude <cstring>
usi ng namespace std;

int main() {

Chapter 14: Templates & Container Classes
12

of stream data("data. txt");
assure(data, "data.txt");
of stream bi ndata("data. bin", ios::binary);
assure(bi ndata, "data.bin");
time_t tiner;
/1 Seed random nunber generator:
srand(time(&iner));
for(int i =0; i < 100; i++) {
Dat aPoi nt d;
/1 Convert date/time to a structure:
d.setTine(*localtime(&inmer));
timer += 55; // Readi ng each 55 seconds
d. setLatitude("45*20"' 31\"");
d. set Longi tude("22*34' 18\"");
/1 Zero to 199 neters:
doubl e newdepth = rand() % 200;
double fraction = rand() % 100 + 1;
newdept h += doubl e(1) / fraction;
d. set Dept h(newdept h) ;
doubl e newtenp = 150 + rand()%00; // Kelvin
fraction = rand() % 100 + 1;
newt enp += (double)l / fraction;
d. set Tenper at ur e(newt enp) ;
d. print(data);
bi ndat a. write((unsigned char*) &d,
si zeof (d));
}
Y I~

Thefile DATA.TXT iscreated in the ordinary way as an ASCI| file, but DATA.BIN hasthe
flag ios::binary to tell the constructor to set it up as abinary file.

The Standard C library function time(), when called with a zero argument, returns the current
time asatime_t value, which is the number of seconds elapsed since 00:00:00 GMT, January
1 1970 (the dawning of the age of Aquarius?). The current time is the most convenient way to
seed the random number generator with the Standard C library function srand(), asis done
here.

Sometimes a more convenient way to store the timeis as atm structure, which has all the
elements of the time and date broken up into their constituent parts as follows:

struct tm{
int tmsec; // 0-59 seconds
int tmmn; // 0-59 mnutes
int tmhour; // 0-23 hours

Chapter 14: Templates & Container Classes
113

nt tmnday; // Day of nonth

nt tmnon; // 0-11 nonths

nt tmyear; // Cal endar year

nt tmwday; // Sunday == 0, etc.

nt tmyday; // 0-365 day of year

nt tmisdst; // Daylight savings?

}s

To convert from the time in seconds to the local time in the tm format, you use the Standard
C library localtime() function, which takes the number of seconds and returns a pointer to the
resulting tm. Thistm, however, is a static structure inside the localtime() function, which is
rewritten every time localtime() is called. To copy the contents into the tm struct inside
DataPoint, you might think you must copy each element individually. However, all you must
do is a structure assignment, and the compiler will take care of the rest. This means the right-
hand side must be a structure, not a pointer, so the result of localtime() is dereferenced. The
desired result is achieved with

d.setTine(*localtime(&tinmer));

After this, the timer isincremented by 55 secondsto give an interesting interval between
readings.

The latitude and longitude used are fixed values to indicate a set of readings at asingle
location. Both the depth and the temperature are generated with the Standard C library rand()
function, which returns a pseudorandom number between zero and the constant
RAND_MAX. To put thisin adesired range, use the modulus operator % and the upper end
of the range. These numbers are integral; to add a fractional part, a second call torand() is
made, and the value isinverted after adding one (to prevent divide-by-zero errors).

In effect, the DATA.BIN fileis being used as a container for the data in the program, even
though the container exists on disk and not in RAM. To send the data out to the disk in binary
form, write() isused. The first argument is the starting address of the source block — notice it
must be cast to an unsigned char* because that’s what the function expects. The second
argument is the number of bytes to write, which is the size of the DataPoint object. Because
no pointers are contained in DataPoint, there is no problem in writing the object to disk. If
the object is more sophisticated, you must implement a scheme for serialization . (Most
vendor class libraries have some sort of serialization structure built into them.)

Verifying & viewing the data

To check the validity of the data stored in binary format, it is read from the disk and put in
text formin DATA2.TXT, so that file can be compared to DATA.TXT for verification. In the
following program, you can see how simple this data recovery is. After the test fileis created,
the records are read at the command of the user.

//: CO2: Dat ascan. cpp
/1{L} Datal og
/1 Verify and view | ogged data

Chapter 14: Templates & Container Classes
114

#i ncl ude "Dat alLogger. h"
#include "../require. h"
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <strstreane

#i ncl ude <i omani p>
usi ng nanmespace std;

int main() {
i fstream bi ndata("data. bin", ios::binary);
assure(bi ndata, "data.bin");
/1 Create conparison file to verify data.txt:
of streamverify("data2.txt");
assure(verify, "data2.txt");
Dat aPoi nt d;
whi | e(bi ndat a. r ead(
(unsi gned char*)&d, sizeof d))
d.print(verify);
bi ndata.clear(); // Reset state to "good"
/1 Display user-sel ected records:
int recnum= 0;
/1 Left-align everything:
cout.setf(ios::left, ios::adjustfield);
/1 Fixed precision of 4 deciml places:
cout.setf(ios::fixed, ios::floatfield);
cout. precision(4);
for(;;) {
bi ndat a. seekg(recnunt sizeof d, ios::beg);
cout << "record " << recnum << endl|
i f(bindata. read(
(unsigned char*)&d, sizeof d)) {
cout << asctinme(&(d.getTine()));
cout << setw(1ll) << "Latitude"
<< setw(11l) << "Longitude"
<< setw(10) << "Depth"
<< setw(12) << "Tenperature"
<< endl;
/1 Put a line after the description
cout << setfill('-") << setw(43) << '-'
<< setfill (' ') << endl;
cout << setw(1ll) << d.getlLatitude()
<< setw(1l) << d.getLongitude()
<< setw(10) << d. get Depth()

Chapter 14: Templates & Container Classes
115

<< setw(12) << d.get Tenperature()
<< endl;
} else {
cout << "invalid record nunber" << endl;
bi ndata.clear(); // Reset state to "good"
}
cout << endl
<< "enter record number, x to quit:";
char buf[10];
cin.getline(buf, 10);
i f(buf[0] == "'"x") break;
i strstream i nput (buf, 10);
i nput >> recnum
}
Y I~

The ifstream bindata is created from DATA.BIN as abinary file, with theios::nocreate flag
on to cause the assert() to fail if the file doesn’t exist. Theread() statement reads asingle
record and places it directly into the DataPoint d. (Again, if DataPoint contained pointers
this would result in meaningless pointer values.) Thisread() action will set bindata’s failbit
when the end of thefile is reached, which will cause the while statement to fail. At this point,
however, you can’'t move the get pointer back and read more records because the state of the
stream won't alow further reads. So the clear () functionis called to reset the failbit.

Once the record isread in from disk, you can do anything you want with it, such as perform
calculations or make graphs. Here, it is displayed to further exercise your knowledge of
iostream formatting.

The rest of the program displays a record number (represented by recnum) selected by the
user. As before, the precision isfixed at four decimal places, but thistime everything is left
justified.

The formatting of this output looks different from before:

record O
Tue Nov 16 18:15:49 1993
Latitude Longi tude Depth Tenper at ure

45*20' 31" 22*34' 18" 186.0172 269.0167

To make sure the labels and the data columns line up, the labels are put in the same width
fields as the columns, using setw(). The line in between is generated by setting the fill
character to ‘-’, the width to the desired line width, and outputting asingle ‘-'.

If theread() fails, you'll end up in the else part, which tells the user the record number was
invalid. Then, because the failbit was set, it must be reset with a call to clear () so the next
read() issuccessful (assuming it’sin the right range).

Chapter 14: Templates & Container Classes
116

Of course, you can also open the binary datafile for writing as well as reading. Thisway you
can retrieve the records, modify them, and write them back to the same location, thus creating
aflat-file database management system. In my very first programming job, | also had to create
aflat-file DBMS — but using BASIC on an Apple 1. It took months, while this took minutes.
Of course, it might make more sense to use a packaged DBM S now, but with C++ and
iostreams you can still do all the low-level operations that are necessary in alab.

Counting editor

Often you have some editing task where you must go through and sequentially number
something, but all the other text is duplicated. | encountered this problem when pasting digital
photos into a Web page — | got the formatting just right, then duplicated it, then had the
problem of incrementing the photo number for each one. So | replaced the photo number with
XXX, duplicated that, and wrote the following program to find and replace the “XXX” with
an incremented count. Notice the formatting, so the value will be “001,” “002,” etc.:

/1: CO2: Number Phot 0s. cpp

/1 Find the marker "XXX' and replace it with an
/1 increnmenting nunber whereever it appears. Used
/!l to help format a web page with photos in it
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <sstreanp

#i ncl ude <i omani p>

#i ncl ude <string>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 2);
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (argv[2]);
assure(out, argv[2]);
string |line;
int counter = 1;
whil e(getline(in, line)) {
int xxx = line.find("XXX");
i f(xxx I'= string::npos) {
ostringstreamcntr;
cntr << setfill('0') << setw(3) << counter++;
line.replace(xxx, 3, cntr.str());

}

out << line << endl;

}

Chapter 14: Templates & Container Classes
17

|}///:~

Breaking up big files
This program was created to break up big filesinto smaller ones, in particular so they could
be more easily downloaded from an Internet server (since hangups sometimes occur, this
allows someone to download afile a piece at atime and then re-assembleit at the client end).
You'll note that the program also creates a reassembly batch file for DOS (whereitis
messier), whereas under Linux/Unix you simply say something like “cat *piece* >
destination.file".

This program reads the entire file into memory, which of course relies on having a 32-bit
operating system with virtual memory for big files. It then piecesit out in chunksto the
smaller files, generating the names as it goes. Of course, you can come up with a possibly
more reasonable strategy that reads a chunk, creates afile, reads another chunk, etc.

Note that this program can be run on the server, so you only have to download the big file
once and then break it up once it’s on the server.

/1: CO02: Breakup. cpp

/!l Breaks a file up into smaller files for
/1 easier downl oads

#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <i omani p>

#i ncl ude <strstreanp

#i ncl ude <string>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1l], ios::binary);
assure(in, argv[1]);
in.seekg(0, ios::end); // End of file
long fileSize = in.tellg(); // Size of file
cout << "file size = " << fileSize << endl
in seekg(0, ios::beg); // Start of file
char* fbuf = new char[fileSize];
require(fbuf !'= 0);
in.read(fbuf, fileSize);
in.close();
string infile(argv[1]);

Chapter 14: Templates & Container Classes
118

int dot = infile.find('.");
whi l e(dot !'= string::npos)
infile.replace(dot, 1, "-");
dot = infile.find('.");
}
string bat chNange(
"DOSAssenbl e" + infile + ".bat");
of stream bat chFi | e(bat chNanme. c_str());
batchFile << "copy /b ";
int filecount = 0;
const int sbufsz = 128;
char sbuf[sbufsz];
const |ong pieceSize = 1000L * 100L
| ong byteCounter = 0;
whi | e(byt eCounter < fileSize) {
ostrstream nanme(sbuf, sbufsz);
nane << argv[1l] << "-part" << setfill('0")
<< setw(2) << filecount++ << ends;
cout << "creating " << shuf << endl
if(filecount > 1)
batchFile << "+";
bat chFi | e << sbuf;

of stream out (sbuf, ios::out | ios::binary);
assure(out, sbhuf);
| ong byteq;

i f(byteCounter + pieceSize < fileSize)
byteq = pi eceSi ze;
el se
byteq = fileSize - byteCounter
out.wite(fbuf + byteCounter, byteq);
cout << "wrote " << byteq << " bytes, ";
byt eCount er += byteq;
out. cl ose();

cout << "ByteCounter = " << byteCounter
<< ", fileSize = " << fileSize << endl
}
batchFile << " " << argv[1l] << endl
Y I~

Chapter 14: Templates & Container Classes
119

Summary

This chapter has given you afairly thorough introduction to the iostream class library. In all
likelihood, it isall you need to create programs using iostreams. (In later chaptersyou'll see
simple examples of adding iostream functionality to your own classes.) However, you should
be aware that there are some additional featuresin iostreams that are not used often, but which
you can discover by looking at the iostream header files and by reading your compiler's
documentation on iostreams.

Exercises

1.

Open afile by creating an ifstr eam object called in. Make an ostr stream
object called os, and read the entire contents into the ostr str eam using the
rdbuf() member function. Get the address of os's char* with the str ()
function, and capitalize every character in the file using the Standard C
toupper () macro. Write the result out to a new file, and delete the memory
allocated by os.

Create a program that opens afile (the first argument on the command line)
and searchesit for any one of a set of words (the remaining arguments on
the command line). Read the input aline at atime, and print out the lines
(with line numbers) that match.

Write a program that adds a copyright notice to the beginning of all source-
code files. Thisisasmall modification to exercise 1.

Use your favorite text-searching program (grep, for example) to output the
names (only) of al the files that contain a particular pattern. Redirect the
output into afile. Write a program that uses the contents of that file to
generate a batch file that invokes your editor on each of the files found by
the search program.

Chapter 14: Templates & Container Classes

120

3. Templatesin
depth

Nontype template arguments

Here is arandom number generator class that always produces a unique number and
overloads operator () to produce a familiar function-call syntax:

//: CO03:Urand. h

/1 Uni que random nunber generat or
#i f ndef URAND H

#defi ne URAND H

#i ncl ude <cstdlib>

#i ncl ude <cti me>

t enpl at e<i nt upper Bound>
class Urand {
i nt used[upper Bound] ;
bool recycle;
publi c:
Urand(bool recycle = fal se);
int operator()(); // The "generator" function

IR

t enpl at e<i nt upper Bound>
Ur and<upper Bound>: : Urand(bool recyc)
recycl e(recyc) {
menset (used, 0, upperBound * sizeof(int));
srand(time(0)); // Seed random number generat or

}

t enpl at e<i nt upper Bound>

121

i nt Urand<upper Bound>: : operator()() {
i f(!menchr(used, 0, upperBound)) {

i f(recycle)
nenset (used, O, si zeof (used) * sizeof(int));
el se
return -1; // No nore spaces |eft
}
int newal;

whi | e(used[newal = rand() % upperBound])
; /1 Until unique value is found

used[newal] ++; // Set flag

return newal ;

}
#endi f // URAND_H ///:~

The uniqueness of Urand is produced by keeping a map of all the numbers possible in the
random space (the upper bound is set with the template argument) and marking each one off
asit’'sused. The optional constructor argument allows you to reuse the numbers once they're
all used up. Notice that thisimplementation is optimized for speed by alocating the entire
map, regardless of how many numbers you' re going to need. If you want to optimize for size,
you can change the underlying implementation so it allocates storage for the map dynamically
and puts the random numbers themselves in the map rather than flags. Notice that this change
in implementation will not affect any client code.

Default template arguments
The typename keyword

Consider the following:

/1: CO03: Typenanedl D. cpp
/1 Using 'typenane' to say it's a type,
/1 and not sonething other than a type

tenpl at e<cl ass T> class X {
/1 Wthout typename, you should get an error:
typenane T::id i;

public:

} void f() { i.90): }

Chapter 15: Multiple Inheritance
122

class Y {
public:
class id {
public:
void g() {}
b
b

int main() {
Yy,
X<Y> xy;
xy. f();

Yy I~

The template definition assumes that the class T that you hand it must have a nested identifier
of somekind called id. But id could be a member object of T, in which case you can perform
operations on id directly, but you couldn’t “create an object” of “the typeid.” However, that's
exactly what is happening here: the identifier id is being treated as if it were actually a nested
typeinside T. Inthecase of class Y, id isin fact a nested type, but (without the typename
keyword) the compiler can't know that when it's compiling X.

If, when it sees an identifier in atemplate, the compiler has the option of treating that
identifier as atype or as something other than atype, then it will assume that the identifier
refers to something other than atype. That is, it will assume that the identifier refersto an
object (including variables of primitive types), an enumeration or something similar.
However, it will not — cannot — just assume that it is atype. Thus, the compiler gets confused
when we pretend it's atype.

The typename keyword tells the compiler to interpret a particular name as atype. It must be
used for a name that:

1. Isaquadified name, one that is nested within another type.

2. Depends on atemplate argument. That is, atemplate argument is somehow involved in
the name. The template argument causes the ambiguity when the compiler makes the
simplest assumption: that the name refers to something other than atype.

Because the default behavior of the compiler isto assume that a name that fits the above two
pointsis not atype, you must use typename even in places where you think that the compiler
ought to be able to figure out the right way to interpret the name on its own. In the above
example, when the compiler sees T::id, it knows (because of the typename keyword) that id
refersto a nested type and thus it can create an object of that type.

The short version of theruleis: if your type is a qualified name that involves atemplate
argument, you must use typename.

Chapter 15: Multiple Inheritance
123

Typedefing atypename
The typename keyword does not autometically create atypedef. A line which reads:
| typenane Seq::iterator It;

causes a variable to be declared of type Seq::iterator. If you mean to make atypedef, you
must say:

| typedef typenane Seq:.:iterator It;

Using typename instead of class

With the introduction of the typename keyword, you now have the option of using typename
instead of classin the template argument list of atemplate definition. This may produce code
which isclearer:

/1: CO03: Usi ngTypenane. cpp
/1 Using 'typenane' in the tenplate argunment |ist

tenpl at e<t ypenane T> class X { };

int main() {
X<int> x;
Y I~

You'll probably see agreat deal of code which does not use typename in this fashion, since
the keyword was added to the language a relatively long time after templates were introduced.

Function templates

A class template describes an infinite set of classes, and the most common place you'll see
templatesis with classes. However, C++ also supports the concept of an infinite set of
functions, which is sometimes useful. The syntax is virtually identical, except that you create
afunction instead of aclass.

The clue that you should create afunction template is, as you might suspect, if you find
you're creating a number of functions that look identical except that they are dealing with
different types. The classic example of a function template is a sorting function.1! However, a
function template is useful in all sorts of places, as demonstrated in the first example that
follows. The second example shows a function template used with containers and iterators.

11 see C++ Inside & Out (Osborne/McGraw-Hill, 1993) by the author, Chapter 10.

Chapter 15: Multiple Inheritance
124

A string conversion system

//: CO03:stringConv.h

/1 Chuck Allison's string converter
#i f ndef STRI NGCONV_H

#defi ne STRI NGCONV_H

#i ncl ude <string>

#i ncl ude <sstreanp

t enpl at e<t ypename T>
T fronBtring(const std::string& s) {
std::istringstreamis(s);
Tt,;
is > t;
return t;

}

t enpl at e<t ypename T>

std::string toString(const T& t) {
std::ostringstreams
s << t;
return s.str();

}
#endif // STRINGCONV_H ///:~

Here's atest program, that includes the use of the Standard Library complex number type:

/1: CO03:stringConvTest.cpp
#i ncl ude "stringConv. h"

#i ncl ude <i ostreanp

#i ncl ude <compl ex>

usi ng namespace std;

int main() {

int i = 1234;

cout << "i == \"" << toString(i) << "\"\n";
float x = 567. 89;

cout << "x == \"" << toString(x) << "\"\n";
conpl ex<float> c(1.0, 2.0);

cout << "¢ == \"" << toString(c) << "\"\n";

cout << endl

Chapter 15: Multiple Inheritance
125

i = fronBtring<int>(string("1234"));
cout << "i == " << i << endl
x = fronBtring<float>(string("567.89"));
cout << "x == " << x << endl
c = fronString< conpl ex<float> >(string("(1.0,2.0)"));
cout << "¢ == " << ¢ << endl

Y I~

The output is what you'd expect:

i == "1234"

X == "567.89

c =="(1,2)

i == 1234

x == 567.89

c == (1, 2)

A memory allocation system

There are afew things you can do to make the raw memory allocation routines malloc(),
calloc() and realloc() safer. The following function template produces one function
getmem() that either allocates a new piece of memory or resizes an existing piece (like
realloc()). In addition, it zeroes only the new memory, and it checks to see that the memory
is successfully alocated. Also, you only tell it the number of elements of the type you want,
not the number of bytes, so the possibility of a programmer error is reduced. Here' s the
header file:

/1: C03: Cetmem h

/1 Function tenplate for nenory
#i f ndef GETMEM H

#defi ne GETMEM H

#include "../require. h"

#i ncl ude <cstdlib>

#i ncl ude <cstring>

t enpl at e<cl ass T>
void getnmem(T*& ol dnem int elenms) {
typedef int cntr; // Type of el enent counter
const int csz = sizeof(cntr); // And size
const int tsz = sizeof(T);
if(elems == 0)
free(& ((cntr*)oldmem[-1]));

Chapter 15: Multiple Inheritance
126

}

return;
}
T p = ol dnmem
cntr ol dcount = 0;
if(p) { // Previously allocated nenory
/1 Ad style:
/1 ((cntr*)p)--; // Back up by one cntr
/1 New style:
cntr* tnp = reinterpret_cast<cntr*>(p);
p = reinterpret_cast<T*>(--tnp);
ol dcount = *(cntr*)p; // Previous # el ens
}
T* m= (T*)realloc(p, elens * tsz + csz);
require(m!= 0);
((cntr)n) = elens; // Keep track of count
const cntr increment = elens - ol dcount;
if(increment > 0) {
/1 Starting address of data:
long startadr = (long) & nfoldcount]);
startadr += csz;
/1 Zero the additional new nenory:
nmenset ((void*)startadr, 0, increment * tsz);
}
/1 Return the address beyond the count:
oldmem = (T*) & ((cntr*)m[1]);

t enpl at e<cl ass T>
inline void freemem{(T * m) { getmen(m 0); }

#endif // CGETMEMH ///]:~

To be able to zero only the new memory, a counter indicating the number of elements
allocated is attached to the beginning of each block of memory. The typedef cntr isthetype
of this counter; it allows you to change fromint to long if you need to handle larger chunks
(other issues come up when using long, however — these are seen in compiler warnings).

A pointer reference is used for the argument oldmem because the outside variable (a pointer)
must be changed to point to the new block of memory. oldmem must point to zero (to allocate
new memory) or to an existing block of memory that was created with getmem(). This
function assumes you' re using it properly, but for debugging you could add an additional tag
next to the counter containing an identifier, and check that identifier in getmem() to help
discover incorrect calls.

Chapter 15: Multiple Inheritance

127

If the number of elements requested is zero, the storage is freed. There's an additional
function template freemem() that aliases this behavior.

You'll notice that getmem() is very low-level —there are lots of casts and byte
manipulations. For example, the oldmem pointer doesn’t point to the true beginning of the
memory block, but just past the beginning to allow for the counter. So to free() the memory
block, getmem(') must back up the pointer by the amount of space occupied by cntr. Because
oldmemisaT*, it must first be cast to acntr*, then indexed backwards one place. Finally
the address of that location is produced for free() in the expression:

| free(& ((cntr*)oldmem[-1]));

Similarly, if thisis previously allocated memory, getmem() must back up by one cntr sizeto
get the true starting address of the memory, and then extract the previous number of elements.
The true starting addressis required inside realloc(). If the storage size is being increased,
then the difference between the new number of elements and the old number is used to
calculate the starting address and the amount of memory to zero in memset(). Finally, the
address beyond the count is produced to assign to oldmem in the statement:

ol dmem = (T*) &(((cntr*)m[1]);

Again, because oldmem is areference to a pointer, this has the effect of changing the outside
argument passed to getmem().

Here's a program to test getmem(). It alocates storage and fillsit up with values, then
increases that amount of storage:

/1: CO3: Get mem cpp

/1 Test nmemory function tenplate
#i ncl ude " Get nem h"

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {

int* p =0;
get nenm(p, 10);
for(int i =0; i < 10; i++) {

cout << p[i] <<'
pli] =1i;
}
cout << '\n';
getmen(p, 20);
for(int j =0; j < 20; j++) {
cout << p[j] << :
plil =1i;
}

cout << '\n';

Chapter 15: Multiple Inheritance
128

getmem(p, 25);

for(int k = 0; k < 25; k++)
cout << p[k] << "' *;

freemen(p);

cout << '\n';

float* f = 0;

getmem(f, 3);

for(int u=0; u<3; u++) {
cout << flu] << ' ';
flul = u + 3.14159;

}
cout << '\n';
getmen(f, 6);

for(int v = 0; v < 6; v++)
cout << f[v] << ' ';
freemen(f);
Y I~

After each getmem(), the valuesin memory are printed out to show that the new ones have
been zeroed.

Notice that a different version of getmem() isinstantiated for the int and float pointers. You
might think that because all the manipulations are so low-level you could get away with a
single non-template function and pass avoid* & asoldmem. This doesn’t work because then
the compiler must do a conversion from your type to avoid*. To take the reference, it makes
atemporary. This produces an error because then you' re modifying the temporary pointer, not
the pointer you want to change. So the function template is necessary to produce the exact
type for the argument.

Type induction in function
templates

Asasimple but very useful example, consider the following:

/l: :arraySize.h

/1 Uses tenplate type induction to
/1 discover the size of an array
#i f ndef ARRAYSI ZE_H

#defi ne ARRAYSI ZE_H

tenpl at e<t ypenanme T, int size>

Chapter 15: Multiple Inheritance
129

int asz(T (& [size]) { return size; }

#endif // ARRAYSIZE H ///:~

This actually figures out the size of an array as a compile-time constant value, without using

any sizeof() operations! Thus you can have a much more succinct way to calculate the size of

an array at compile time:

[1: CO3:ArraySi ze. cpp

/1 The return value of the tenplate function
/1 asz() is a conpile-tine constant

#include "../arraySi ze. h"

int main() {
int a[12], b[20];
const int szl = asz(a);
const int sz2 = asz(b);
int c[szl], d[sz2];

Y I~

Of course, just making a variable of a built-in type a const does not guarantee it’s actually a
compile-time constant, but if it's used to define the size of an array (asit isin the last line of
main()), then it must be a compile-time constant.

Taking the address of a
generated function template

There are anumber of situations where you need to take the address of a function. For
example, you may have afunction that takes an argument of a pointer to another function. Of
courseit’s possible that this other function might be generated from a template function so
you need some way to take that kind of address!2:

/1: CO03: Tenpl at eFuncti onAddr ess. cpp

/1 Taking the address of a function generated
/1 froma tenpl ate.

tenpl ate <typenanme T> void f(T*) {}

void h(void (*pf)(int*)) {}

12 | am indebted to Nathan Myers for this example.

Chapter 15: Multiple Inheritance
130

tenpl ate <class T>
void g(void (*pf)(T*)) {}

int main() {
/1 Full type exposition:

h(&f <i nt>);
/1 Type induction:
h(&f);

/1 Full type exposition:
g<i nt >(&f <i nt>);
/1 Type inductions:
g(& <i nt>);
g<i nt>(&f);

Y I~

This example demonstrates a number of different issues. First, even though you're using
templates, the signatures must match — the function h(') takes a pointer to a function that takes
anint* and returns void, and that’s what the template f produces. Second, the function that
wants the function pointer as an argument can itself be atemplate, asin the case of the
template g.

In main(') you can see that type induction works here, too. The first call to h() explicitly
gives the template argument for f, but since h() saysthat it will only take the address of a
function that takes an int*, that part can be induced by the compiler. With g() the situation is
even more interesting because there are two templates involved. The compiler cannot induce
the type with nothing to go on, but if either f or g is given int, then the rest can be induced.

Local classes in templates

Applying afunctionto an STL
sequence

Suppose you want to take an STL sequence container (which you'll learn more about in
subsequent chapters; for now we can just use the familiar vector) and apply afunction to all
the objectsit contains. Because avector can contain any type of object, you need a function
that works with any type of vector and any type of object it contains:

/1: CO3:appl ySequence. h
/1 Apply a function to an STL sequence cont ai ner

Chapter 15: Multiple Inheritance
131

/1 0 argunents, any type of return val ue:
tenpl at e<cl ass Seq, class T, class R>
void apply(Seq& sq, R (T::*f)()) {
typenane Seq::iterator it = sq.begin();
while(it '= sq.end()) {
((*i1)->*1)();
1t ++;
}
}

/1 1 argunment, any type of return val ue:
tenpl at e<cl ass Seq, class T, class R class A>
void apply(Seq& sq, R(T::*f)(A), A a) {
typenane Seq::iterator it = sq.begin();
while(it '= sq.end()) {
((xit)->*f)(a);
1t ++;
}
}

/1 2 argunents, any type of return val ue:
tenpl at e<cl ass Seq, class T, class R
class Al, class A2>
void apply(Seq& sq, R(T::*f)(Al, A2),
Al al, A2 a2) {
typenane Seq::iterator it = sq.begin();
while(it '= sq.end()) {
((*it)->*f)(al, a2);
it++;
}
}

/1l Etc., to handle maximum|likely argunents ///:~

The apply() function template takes a reference to the container class and a pointer-to-
member for a member function of the objects contained in the class. It uses an iterator to
move through the Stack and apply the function to every object. If you've (understandably)
forgotten the pointer-to-member syntax, you can refresh your memory at the end of Chapter

Notice that there are no STL header files (or any header files, for that matter) included in
applySequence.h, so it is actually not limited to use with an STL sequence. However, it does
make assumptions (primarily, the name and behavior of theiterator) that apply to STL
sequences.

Chapter 15: Multiple Inheritance

132

Y ou can see there is more than one version of apply(), so it’s possible to overload function
templates. Although they all take any type of return value (which isignored, but the type
information is required to match the pointer-to-member), each version takes a different
number of arguments, and because it’s a template, those arguments can be of any type. The
only limitation here is that there’ s no “super template” to create templates for you; thus you
must decide how many arguments will ever be required.

To test the various overloaded versions of apply(), the class Gromit13 is created containing
functions with different numbers of arguments:

/l: CO03:Gomt.h

/1 The techno-dog. Has menber functions
/1 with various nunbers of argunents.
#i ncl ude <i ostreanp

class Gomt {
int arf;
public:
Gomt(int arf =1) : arf(arf + 1) {}
voi d speak(int) {
for(int i =0; i < arf; i++)
std::cout << "arfl ";
std::cout << std::endl;
}

char eat (float) {
std::cout << "chomp!" << std::endl;

return 'z';

}

i nt sleep(char, double) {
std::cout << "zzz..." << std::endl;
return O;

}

void sit(void) {}

Y, 11~

Now the apply() template functions can be combined with avector <Gromit*> to make a
container that will call member functions of the contained objects, like this:

/1: CO3:applyGomt.cpp

/1 Test appl ySequence. h
#include "Gomt.h"

#i ncl ude "appl ySequence. h"

13 A reference to the British animated short The Wrong Trousers by Nick Park.

Chapter 15: Multiple Inheritance
133

#i ncl ude <vector>
#i ncl ude <i ostreanr
usi ng namespace std;

int main() {
vector<G omt*> dogs;
for(int i =0; i <5; i++)
dogs. push_back(new Gromt(i));
appl y(dogs, &Gromit::speak, 1);
appl y(dogs, &Gonmit::eat, 2.0f);
appl y(dogs, &Gonit::sleep, 'z', 3.0);
appl y(dogs, &Gomit::sit);
Y I~

Although the definition of apply() is somewhat complex and not something you' d ever
expect a novice to understand, its use is remarkably clean and simple, and a novice could
easily use it knowing only what it isintended to accomplish, not how. Thisis the type of
division you should strive for in all of your program components: The tough details are all
isolated on the designer’ s side of the wall, and users are concerned only with accomplishing
their goals, and don't see, know about, or depend on details of the underlying implementation

"emplate-templates

//: CO3: Tenpl at eTenpl at e. cpp
#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng nanmespace std;

/1 As long as things are sinple,
/1 this approach works fine:
t enpl at e<t ypename C
void print1(C& c) {
typenane C :iterator it;
for(it = c.begin(); it !'=c.end(); it++)
cout << *jit << " ",
cout << endl;

}

/1 Tenpl ate-tenpl ate argument mnust
/1 be a class; cannot use typenane:
t enpl at e<typenanme T, tenpl ate<typenane> class C

Chapter 15: Multiple Inheritance
134

void print2(C<T>& c¢) {
copy(c. begin(), c.end(),
ostream.iterator<T>(cout, " "));
cout << endl

}

int main() {
vector<string> v(5, "Yow");
printl(v);
print2(v);

Y I~

Member function templates

It's also possible to make apply() a member function template of the class. That is, a separate
template definition from the class’ template, and yet a member of the class. This may produce
a cleaner syntax:

dogs. appl y(& G onit::sit);
Thisis analogous to the act (in Chapter X X) of bringing ordinary functions inside a class.14

The definition of the apply() functions turn out to be cleaner, as well, because they are
members of the container. To accomplish this, a new container isinherited from one of the
existing STL sequence containers and the member function templates are added to the new
type. However, for maximum flexibility we'd like to be able to use any of the STL sequence
containers, and for thisto work a template-template must be used, to tell the compiler that a
template argument is actually atemplate, itself, and can thus take a type argument and be
instantiated. Hereiswhat it looks like after bringing the apply() functions into the new type
as member functions:

/1: CO03: appl yMenber. h
/1 appl ySequence. h nodified to use
/1 menber function tenplates

tenpl at e<cl ass T, tenpl ate<typename> cl ass Seq>
cl ass SequenceWthApply : public Seq<T*> {
public:

/1 0 argunents, any type of return val ue:

14 Check your compiler version information to seeif it supports member function templates.

Chapter 15: Multiple Inheritance
135

t enpl at e<cl ass R>
void apply(R (T::*f)()) {
iterator it = begin();
while(it !'=end()) {
((*it)->*)();
1t ++;
}
}

/1 1 argunment, any type of return val ue:
tenpl ate<cl ass R, class A>
void appl y(R(T::*f) (A, Aa) {
iterator it = begin();
while(it '=end()) {
((xit)->*f)(a);
1t ++;
}
}

/1 2 argunents, any type of return val ue:
tenpl ate<class R, class Al, class A2>
void appl y(R(T::*f) (AL, A2),
Al al, A2 a2) {
iterator it = begin();
while(it !'= end()) {
((*it)->*f)(al, a2);
it++;

}
}
Y, M1~

Because they are members, the apply() functions don’t need as many arguments, and the
iterator class doesn’t need to be qualified. Also, begin() and end() are now member
functions of the new type and so look cleaner as well. However, the basic code is still the
same.

Y ou can see how the function calls are al'so simpler for the client programmer:

/1: CO03:applyGonit2. cpp
/1 Test applyMenber. h
#include "Gomt.h"

#i ncl ude "appl yMenber. h"
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {

Chapter 15: Multiple Inheritance
136

SequenceWt hAppl y<Gromt, vector> dogs;
for(int i =0; i <5; i++)
dogs. push_back(new Gromt(i));
dogs. appl y(& G oni t:: speak, 1);
dogs. appl y(& G onit::eat, 2.0f);
dogs. appl y(& G onit::sleep, 'z', 3.0);
dogs. appl y(& G onmit::sit);
Y I~

Conceptually, it reads more sensibly to say that you're calling apply() for the dogs container.

Why virtual member template functions
are disallowed

Nested template classes
Template specializations

Full specialization

Partial Specialization

A practical example

There's nothing to prevent you from using a class template in any way you' d use an ordinary
class. For example, you can easily inherit from a template, and you can create a new template
that instantiates and inherits from an existing template. If the vector class does everything you
want, but you'd also like it to sort itself, you can easily reuse the code and add valueto it:

//: C03:Sorted.h

/1l Tenpl ate specialization
#i f ndef SORTED H

#def i ne SORTED H

#i ncl ude <vector>

t enpl at e<cl ass T>
class Sorted : public std::vector<T> {
public:

Chapter 15: Multiple Inheritance
137

void sort();

};

t enpl at e<cl ass T>
void Sorted<T>::sort() { // A bubble sort
for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(at(j-1) > at(j)) {
/1 Swap the two el enents:
Tt = at(j-1);
at(j-1) = at(j);
at(j) =t;

}

/1 Partial specialization for pointers:

t enpl at e<cl ass T>

class Sorted<T*> : public std::vector<T*> {
public:

void sort();

};

t enpl at e<cl ass T>
void Sorted<T*>::sort() {
for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(*at(j-1) > *at(j)) {
/1 Swap the two el enents:
™ t = at(j-1);
at(j-1) = at(j);
at(j) =t;

}

/1 Full specialization for char*:

t enpl at e<>

voi d Sorted<char*>::sort() {

for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(strenp(at(j-1), at(j)) > 0) {

/1 Swap the two el enents:
char* t = at(j-1);
at(j-1) = at(j);

Chapter 15: Multiple Inheritance
138

at(j) =t;
}

}
#endi f // SORTED_H ///:~

The Sorted template imposes arestriction on all classesit isinstantiated for: They must
contain a> operator. In SString thisis added explicitly, but in Integer the automatic type
conversion oper ator int provides a path to the built-in > operator. When a template provides
more functionality for you, the trade-off is usually that it puts more requirements on your
class. Sometimes you'll have to inherit the contained class to add the required functionality.
Notice the value of using an overloaded operator here —the I nteger class can rely onits
underlying implementation to provide the functionality.

The default Sorted template only works with objects (including objects of built-in types).
However, it won't sort pointers to objects so the partial specialization is necessary. Even then,
the code generated by the partial specialization won't sort an array of char*. To solve this, the
full specialization compares the char* elements using strcmp() to produce the proper
behavior.

Here'satest for Sorted.h that uses the unique random number generator introduced earlier in
the chapter:

//: CO3:Sorted. cpp

/1 Testing tenplate specialization
#i ncl ude "Sorted. h"

#i ncl ude "Urand. h"

#include "../arraySi ze. h"

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng nanmespace std;

char* words[] = {

"is", "running", "big", "dog", "a
b
char* words2[] = {

"this", "that", "theother",
b
int main() {

Sorted<int> is;

Urand<47> rand;

for(int i =0; i < 15; i++4)

i s. push_back(rand());
for(int I = 0; | <is.size(); |++)

cout << is[l] << :

Chapter 15: Multiple Inheritance
139

cout << endl

is.sort();

for(int 1 =0; | <is.size(); |++)
cout << isf[l] << "' ;

cout << endl

/1l Uses the tenplate partial specialization:
Sorted<string*> ss;

for(int i = 0; i < asz(words); i++)
ss. push_back(new string(words[i]));
for(int i = 0; i < ss.size(); i++)

cout << *ssf[i] << :

cout << endl

ss.sort();

for(int i = 0; i < ss.size(); i++)
cout << *ssf[i] << ' ';

cout << endl

/1 Uses the full char* specialization:
Sort ed<char *> scp;

for(int i =0; i < asz(words2); i++)
scp. push_back(words2[i]);
for(int i = 0; i < scp.size(); i++)

cout << scpl[i] << :
cout << endl
scp.sort();
for(int i = 0; i < scp.size(); i++)
cout << scpl[i] << "' ';
cout << endl
Yy I~

Each of the template instantiations uses a different version of the template. Sorted<int> uses
the “ordinary,” non-specialized template. Sorted<string* > uses the partial specialization for
pointers. Lastly, Sorted<char*> uses the full specialization for char*. Note that without this
full specialization, you could be fooled into thinking that things were working correctly
because the wor ds array would still sort out to “abig dog isrunning” since the partial
specialization would end up comparing the first character of each array. However, wor ds2
would not sort out correctly, and for the desired behavior the full specialization is necessary.

Chapter 15: Multiple Inheritance
140

Pointer specialization
Partial ordering of function templates

Design & efficiency
In Sorted, every time you call add() the element isinserted and the array is resorted. Here,
the horribly inefficient and greatly deprecated (but easy to understand and code) bubble sort is

used. Thisis perfectly appropriate, because it’s part of the private implementation. During
program devel opment, your priorities are to

1. Get the classinterfaces correct.
2. Create an accurate implementation as rapidly as possible so you can:
3. Proveyour design.

Very often, you will discover problems with the class interface only when you assembl e your
initial “rough draft” of the working system. Y ou may also discover the need for “helper”
classes like containers and iterators during system assembly and during your first-pass
implementation. Sometimesiit’s very difficult to discover these kinds of issues during analysis
—your goal in analysis should be to get a big-picture design that can be rapidly implemented
and tested. Only after the design has been proven should you spend the time to flesh it out
completely and worry about performance issues. If the design fails, or if performance is not a
problem, the bubble sort is good enough, and you haven't wasted any time. (Of course, the
ideal solution isto use someone else's sorted container; the Standard C++ template library is
the first place to look.)

Preventing template bloat

Each time you instantiate a template, the code in the template is generated anew (except for
inline functions). If some of the functionality of atemplate does not depend on type, it can be
put in a common base class to prevent needless reproduction of that code. For example, in
Chapter XX in InheritStack.cpp inheritance was used to specify the types that a Stack could
accept and produce. Here' s the templatized version of that code:

//: CO3: Nobloat.h

/1 Tenplatized InheritStack. cpp
#i f ndef NOBLOAT_H

#defi ne NOBLOAT_H

#i nclude "../ COA/ Stack4. h"

t enpl at e<cl ass T>
class NBStack : public Stack {
public:

Chapter 15: Multiple Inheritance
141

void push(T* str) {
St ack: : push(str);

}
T* peek() const {
return (T*) Stack: : peek();
}
T pop() {
return (T*) Stack:: pop();

}
~NBSt ack() ;
b

/1 Defaults to heap objects & ownershi p:
t enpl at e<cl ass T>
NBSt ack<T>:: ~NBSt ack() {
T top = pop();
whi l e(top) {
del ete top;
} top = pop();

}
#endi f // NOBLOAT_H ///:~

As before, the inline functions generate no code and are thus “free.” The functionality is
provided by creating the base-class code only once. However, the ownership problem has
been solved here by adding a destructor (which is type-dependent, and thus must be created
by the template). Here, it defaults to ownership. Notice that when the base-class destructor is
called, the stack will be empty so no duplicate releases will occur.

/1: CO3: Nobl oat Test . cpp
#i ncl ude " Nobl oat. h"
#include "../require. h"
#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng namespace std;

int main(int argc, char* argv[]) {
requireArgs(argc, 1); // File nanme is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
NBSt ack<stri ng> textli nes;
string |line;
/! Read file and store lines in the stack:

Chapter 15: Multiple Inheritance
142

whil e(getline(in, line))
textlines. push(new string(line));

/1 Pop the Iines fromthe stack and print them

string* s;

while((s = (string*)textlines.pop()) !'=0) {
cout << *s << endl
del ete s;

}
Y 11~

Explicit instantiation
At timesit isuseful to explicitly instantiate atemplate; that is, to tell the compiler to lay down

the code for a specific version of that template even though you' re not creating an object at
that point. To do this, you reuse the template keyword as follows:

tenpl at e cl ass Bobbi n<t hr ead>;
tenmpl ate void sort<char>(char*[]);

Here'saversion of the Sorted.cpp example that explicitly instantiates a template before using
it:

/1: CO3:Explicitlnstantiation.cpp
#i ncl ude "Urand. h"

#i ncl ude "Sorted. h"

#i ncl ude <i ostreanp

usi ng namespace std;

/1 Explicit instantiation:
tenpl ate class Sort ed<int>;

int main() {
Sorted<int> is;
Ur and<47> randl
for(int k = 0; k < 15; k++)
i s.push_back(randl());

is.sort();
for(int 1 =0; | <is.size(); |++)
cout << is[l] << endl
Y I~

In this example, the explicit instantiation doesn’t really accomplish anything; the program
would work the same without it. Explicit instantiation is only for special cases where extra
control is needed.

Chapter 15: Multiple Inheritance
143

Explicit specification of template
functions

Normally templates are not instantiated until they are needed. For function templates this just
means the point at which you call the function, but for class templates it's more granular than
that: each individual member function of the templateis not instantiated until the first point of
use. This means that only the member functions you actually use will be instantiated, whichis

quite important since it allows greater freedom in what the template can be used with. For
example:

/1: CO3: Del ayedl nstanti ation. cpp
/1 Menmber functions of class tenplates are not
/1 instantiated until they're needed.

class X {
public:

void f() {}
i

class Y {
public:
vord a0)

tenpl ate <typename T> class Z {
Tt,;

int main() {
Z<X> zX;
zx.a(); // Doesn't create Z<X>::b()
Z<Y> zy;
zy.b(); // Doesn't create Z<Y>::a()

Chapter 15: Multiple Inheritance
144

|}///:~

Here, even though the template purports to use both f() and g() member functions of T, the
fact that the program compiles shows you that it only generates Z<X>::a() whenitis
explicitly called for zx (if Z<X>::b() were also generated at the same time, a compile-time
error message would be generated). Similarly, the call to zy.b() doesn’t generate Z<Y>::a().
Asaresult, the Z template can be used with X and Y, whereasiif all the member functions
were generated when the class was first created it would significantly limit the use of many
templates.

The inclusion vs. separation models
The export keyword

Template programming idioms
The “curioudly-recurring template”
Traits

Summary

One of the greatest weaknesses of C++ templates will be shown to you when you try to write
code that uses templates, especialy STL code (introduced in the next two chapters), and start
getting compile-time error messages. When you're not used to it, the quantity of inscrutable
text that will be spewed at you by the compiler will be quite overwhelming. After awhile
you' Il adapt (although it always feels a bit barbaric), and if it’s any consolation, C++
compilers have actually gotten alot better about this— previously they would only give the
line where you tried to instantiate the template, and most of them now go to the line in the
template definition that caused the problem.

The issueisthat a template implies an interface. That is, even though the template keyword
says “I'll take any type,” the code in atemplate definition actually requires that certain
operators and member functions be supported — that’ s the interface. So in reality, atemplate
definition is saying “1'll take any type that supports thisinterface.” Things would be much
nicer if the compiler could simply say “hey, this type that you' re trying to instantiate the
template with doesn’t support that interface — can't do it.” The Java language has a feature
called interface that would be a perfect match for this (Java, however, has no parameterized
type mechanism), but it will be many years, if ever, before you will see such athingin C++

Chapter 15: Multiple Inheritance
145

(at this writing the C++ Standard has only just been accepted and it will be awhile before all
the compilers even achieve compliance). Compilers can only get so good at reporting
template instantiation errors, so you'll have to grit your teeth, go to the first line reported as an
error and figure it out.

Chapter 15: Multiple Inheritance
146

4: STL Contaners
& lterators

Container classes are the solution to a specific kind of code
reuse problem. They are building blocks used to create
object-oriented programs — they make the internals of a
program much easier to construct.

A container class describes an object that holds other objects. Container classes are so
important that they were considered fundamental to early object-oriented languages. In
Smalltalk, for example, programmers think of the language as the program trandator together
with the classlibrary, and a critical part of that library is the container classes. So it became
natural that C++ compiler vendors a so include a container class library. You'll note that the
vector was so useful that it was introduced in its simplest form very early in this book.

Like many other early C++ libraries, early container class libraries followed Smalltalk’s
object-based hierarchy, which worked well for Smalltalk, but turned out to be awkward and
difficult to use in C++. Another approach was required.

This chapter attempts to slowly work you into the concepts of the C++ Standard Template
Library (STL), which is a powerful library of containers (as well as algorithms, but these are
covered in the following chapter). In the past, | have taught that thereis arelatively small
subset of elements and ideas that you need to understand in order to get much of the
usefulness from the STL. Although this can be true it turns out that understanding the STL
more deeply isimportant to gain the full power of the library. This chapter and the next probe
into the STL containers and a gorithms.

Containers and iterators

If you don’t know how many objects you' re going to need to solve a particular problem, or
how long they will last, you also don’t know how to store those objects. How can you know
how much space to create? Y ou can't, since that information isn’t known until run time.

The solution to most problemsin object-oriented design seems flippant: you create another
type of object. For the storage problem, the new type of object holds other objects, or pointers

147

to objects. Of course, you can do the same thing with an array, but there’s more. This new
type of object, which istypically referred to in C++ as a container (also called acollection in
some languages), will expand itself whenever necessary to accommodate everything you
place insideit. So you don’t need to know how many objects you're going to hold in a
collection. You just create a collection object and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the package. In
C++, it'sthe Standard Template Library (STL). In some libraries, a generic container is
considered good enough for al needs, and in others (C++ in particular) the library has
different types of containers for different needs: a vector for consistent accessto all elements,
and alinked list for consistent insertion at all elements, for example, so you can choose the
particular type that fits your needs. These may include sets, queues, hash tables, trees, stacks,
etc.

All containers have some way to put things in and get things out. The way that you place
something into a container is fairly obvious. There’'s afunction called “push” or “add” or a
similar name. Fetching things out of a container is not always as apparent; if it's an array-like
entity such as a vector, you might be able to use an indexing operator or function. But in
many situations this doesn’t make sense. Also, a single-selection function is restrictive. What
if you want to manipulate or compare a group of elements in the container?

The solution is an iterator, which is an object whose job isto select the elements within a
container and present them to the user of the iterator. Asaclass, it also provides alevel of
abstraction. This abstraction can be used to separate the details of the container from the code
that's accessing that container. The container, via the iterator, is abstracted to be smply a
sequence. The iterator allows you to traverse that sequence without worrying about the
underlying structure —that is, whether it's a vector, alinked list, a stack or something else.
This gives you the flexihility to easily change the underlying data structure without disturbing
the code in your program.

From the design standpoint, al you really want is a sequence that can be manipulated to solve
your problem. If asingle type of sequence satisfied all of your needs, there’ d be no reason to
have different kinds. There are two reasons that you need a choice of containers. First,
containers provide different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different than that of a set or alist. One
of these might provide a more flexible solution to your problem than the other. Second,
different containers have different efficiencies for certain operations. The best exampleisa
vector and alist. Both are simple sequences that can have identical interfaces and external
behaviors. But certain operations can have radically different costs. Randomly accessing
elements in avector is a constant-time operation; it takes the same amount of time regardless
of the element you select. However, in alinked list it is expensive to move through the list to
randomly select an element, and it takes longer to find an element if it is further down the list.
On the other hand, if you want to insert an element in the middle of a sequence, it’s much
cheaper in alist than in a vector. These and other operations have different efficiencies
depending upon the underlying structure of the sequence. In the design phase, you might start
with alist and, when tuning for performance, change to a vector. Because of the abstraction
viaiterators, you can change from one to the other with minimal impact on your code.

Chapter 15: Multiple Inheritance
148

In the end, remember that a container is only a storage cabinet to put objectsin. If that cabinet
solves all of your needs, it doesn't really matter how it isimplemented (a basic concept with
most types of objects). If you're working in a programming environment that has built-in
overhead due to other factors, then the cost difference between a vector and alinked list might
not matter. Y ou might need only one type of sequence. Y ou can even imagine the “perfect”
container abstraction, which can automatically change its underlying implementation
according to the way it is used.

STL reference documentation

Y ou will notice that this chapter does not contain exhaustive documentation describing each
of the member functionsin each STL container. Although | describe the member functions
that | use, I've left the full descriptionsto others: there are at least two very good on-line
sources of STL documentation in HTML format that you can keep resident on your computer
and view with a Web browser whenever you need to look something up. Thefirst isthe
Dinkumware library (which covers the entire Standard C and C++ library) mentioned at the
beginning of this book section (page XX X). The second is the freely-downloadable SGI STL
and documentation, freely downloadable at http://www.sgi.com/Technology/STL/. These
should provide complete references when you' re writing code. In addition, the STL books
listed in Appendix XX will provide you with other resources.

The Standard Template Library

The C++ STL15 isapowerful library intended to satisfy the vast bulk of your needs for
containers and algorithms, but in a completely portable fashion. This means that not only are
your programs easier to port to other platforms, but that your knowledge itself does not
depend on the libraries provided by a particular compiler vendor (and the STL islikely to be
more tested and scrutinized than a particular vendor’ s library). Thus, it will benefit you
greatly to look first to the STL for containers and algorithms, before looking at vendor-
specific solutions.

A fundamental principle of software design is that all problems can be simplified by
introducing an extra level of indirection. This simplicity is achieved in the STL using
iterators to perform operations on a data structure while knowing as little as possibl e about
that structure, thus producing data structure independence. With the STL, this means that any
operation that can be performed on an array of objects can also be performed on an STL
container of objects and vice versa. The STL containers work just as easily with built-in types
as they do with user-defined types. If you learn the library, it will work on everything.

15 Contributed to the C++ Standard by Alexander Stepanov and Meng Lee at Hewlett-
Packard.

Chapter 15: Multiple Inheritance
149

The drawback to this independence is that you' |l have to take alittle time at first getting used
to the way things are done in the STL. However, the STL uses a consistent pattern, so once
you fit your mind around it, it doesn’t change from one STL tool to another.

Consider an example using the STL set class. A set will allow only one of each object value
to beinserted into itself. Hereis asimple set created to work with ints by providing int as the
template argument to set:

[1: CO4:Intset.cpp

/1 Sinple use of STL set
#i ncl ude <set>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
set<int> intset;
for(int i =0; i < 25; i++4)
for(int j =0; j < 10; j++4)
/1 Try to insert multiple copies:
intset.insert(j);
/1 Print to output:
copy(intset.begin(), intset.end(),
ostream.iterator<int>(cout, "\n"));
Y I~

Theinsert() member does all the work: it tries putting the new element in and rejectsit if it's
already there. Very often the activitiesinvolved in using a set are simply insertion and a test
to see whether it contains the element. Y ou can aso form a union, intersection, or difference
of sets, and test to see if one set is a subset of another.

In this example, the values 0 - 9 are inserted into the set 25 times, and the results are printed
out to show that only one of each of the valuesis actually retained in the set.

The copy() function is actually the instantiation of an STL template function, of which there
are many. These template functions are generally referred to as “the STL Algorithms’ and
will be the subject of the following chapter. However, several of the algorithms are so useful
that they will be introduced in this chapter. Here, copy() showsthe use of iterators. The set
member functions begin() and end() produce iterators as their return values. These are used
by copy() as beginning and ending points for its operation, which is simply to move between
the boundaries established by the iterators and copy the elements to the third argument, which
isalso an iterator, but in this case, a special type created for iostreams. This placesint objects
on cout and separates them with a newline.

Because of its genericity, copy() is certainly not restricted to printing on a stream. It can be
used in virtually any situation: it needs only three iterators to talk to. All of the algorithms
follow the form of copy(') and simply manipulate iterators (the use of iteratorsis the “extra
level of indirection”).

Chapter 15: Multiple Inheritance
150

Now consider taking the form of Intset.cpp and reshaping it to display alist of the words
used in a document. The solution becomes remarkably simple.

/1: CO4:WbrdSet. cpp
#include "../require. h"
#i ncl ude <string>

#i ncl ude <fstreanp

#i ncl ude <i ostreane

#i ncl ude <set >

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
i fstream source(argv[1]);
assure(source, argv[1]);
string word;
set <string> words;
whi | e(source >> word)
wor ds. i nsert (word);
copy(words. begi n(), words. end(),
ostream.iterator<string>(cout, "\n"));
cout << "Number of unique words:"
<< words. si ze() << endl
Y oI~

The only substantive difference here isthat string is used instead of int. The words are pulled
from afile, but everything elseisthe same asin Intset.cpp. The operator>> returnsa
whitespace-separated group of characters each timeit is called, until there’s no more input
from the file. So it approximately breaks an input stream up into words. Each string is placed
inthe set using insert(), and the copy() function is used to display the results. Because of the
way set isimplemented (as atree), the words are automatically sorted.

Consider how much effort it would be to accomplish the sametask in C, or evenin C++
without the STL.

The basic concepts

The primary ideain the STL isthe container (also known as a collection), which is just what
it sounds like: a place to hold things. Y ou need containers because objects are constantly
marching in and out of your program and there must be someplace to put them while they're
around. Y ou can’'t make named local objects because in atypical program you don’t know
how many, or what type, or the lifetime of the objects you' re working with. So you need a
container that will expand whenever necessary to fill your needs.

Chapter 15: Multiple Inheritance
151

All the containersin the STL hold objects and expand themselves. In addition, they hold your
objectsin a particular way. The difference between one container and another is the way the
objects are held and how the sequence is created. Let’'s start by looking at the simplest
containers.

A vector isalinear sequence that allows rapid random access to its elements. However, it's
expensive to insert an element in the middle of the sequence, and is also expensive when it
allocates additional storage. A dequeisalso alinear sequence, and it allows random access
that’s nearly asfast as vector, but it's significantly faster when it needs to allocate new
storage, and you can easily add new elements at either end (vector only allows the addition of
elements at itstail). A list the third type of basic linear sequence, but it's expensive to move
around randomly and cheap to insert an element in the middle. Thuslist, deque and vector
arevery similar in their basic functionality (they all hold linear sequences), but different in the
cost of their activities. So for your first shot at a program, you could choose any one, and only
experiment with the othersif you're tuning for efficiency.

Many of the problems you set out to solve will only require asimple linear sequence like a
vector, dequeor list. All three have a member function push_back() which you use to insert
anew element at the back of the sequence (deque and list also have push_front()).

But now how do you retrieve those el ements? With avector or deque, it is possible to use the
indexing operator|[], but that doesn’t work with list. Since it would be nicest to learn asingle
interface, we'll often use the one defined for all STL containers: the iterator.

An iterator is a class that abstracts the process of moving through a sequence. It allows you to
select each element of a sequence without knowing the underlying structure of that sequence.
Thisis apowerful feature, partly because it allows usto learn a single interface that works
with all containers, and partly because it allows containers to be used interchangeably.

One more observation and you’ re ready for another example. Even though the STL containers
hold objects by value (that is, they hold the whole object inside themselves) that’s probably
not the way you'll generally use them if you’ re doing object-oriented programming. That’s
because in OOP, most of the time you'll create objects on the heap with new and then upcast
the address to the base-class type, later manipulating it as a pointer to the base class. The
beauty of thisisthat you don’t worry about the specific type of object you' re dealing with,
which greatly reduces the complexity of your code and increases the maintainability of your
program. This process of upcasting iswhat you try to do in OOP with polymorphism, so
you'll usually be using containers of pointers.

Consider the classic “shape” example where shapes have a set of common operations, and you
have different types of shapes. Here'swhat it looks like using the STL vector to hold pointers
to various types of Shape created on the heap:

/1: CO4: Stl shape. cpp

/1 Sinple shapes w STL
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng namespace std;

Chapter 15: Multiple Inheritance
152

cl ass Shape {

public:
virtual void draw() = 0;
virtual ~Shape() {};

}s

class Circle : public Shape {

public:
void draw() { cout << "Circle::drawhn"; }
~Circle() { cout << "~Circle\n"; }

}s

class Triangle : public Shape {

public:
void draw() { cout << "Triangle::dramn"; }
~Triangle() { cout << "~Triangle\n"; }

}s

class Square : public Shape {

public:
void draw() { cout << "Square::drawn"; }
~Square() { cout << "~Square\n"; }

}s

t ypedef std::vector<Shape*> Contai ner;
typedef Container::iterator lter;

int main() {
Cont ai ner shapes;
shapes. push_back(new Circl e);
shapes. push_back(new Square);
shapes. push_back(new Tri angl e) ;

for(lter i = shapes. begin();
i 1= shapes.end(); i++)
(*i)->draw();
/[l ... Sonetine |ater:
for(lter j = shapes. begin();
j != shapes.end(); j++)
delete *j;
Y oI~

Chapter 15: Multiple Inheritance
153

The creation of Shape, Circle, Square and Triangle should be fairly familiar. Shapeisa
pure abstract base class (because of the pure specifier =0) that defines the interface for all
types of shapes. The derived classes redefine the virtual function draw() to perform the
appropriate operation. Now we'd like to create a bunch of different types of Shape object, but
where to put them? In an STL container, of course. For convenience, thistypedef:

| t ypedef std::vector<Shape*> Contai ner;
creates an alias for avector of Shape*, and this typedef:

typedef Container::iterator lter;

uses that alias to create another one, for vector <Shape*>::iterator. Notice that the container
type name must be used to produce the appropriate iterator, which is defined as a nested class.
Although there are different types of iterators (forward, bidirectional, reverse, etc., which will
be explained later) they all have the same basic interface: you can increment them with ++,
you can dereference them to produce the object they’re currently selecting, and you can test
them to see if they're at the end of the sequence. That's what you'll want to do 90% of the
time. And that’s what is done in the above example: after creating a container, it'sfilled with
different types of Shape*. Notice that the upcast happens as the Circle, Square or Rectangle
pointer is added to the shapes container, which doesn’t know about those specific types but
instead holds only Shape*. So as soon as the pointer is added to the container it losesits
specific identity and becomes an anonymous Shape*. Thisis exactly what we want: toss them
all in and let polymorphism sort it out.

Thefirst for loop creates an iterator and sets it to the beginning of the sequence by calling the
begin() member function for the container. All containers have begin() and end() member
functions that produce an iterator selecting, respectively, the beginning of the sequence and
one past the end of the sequence. To test to seeif you' re done, you make sure you're !=to the
iterator produced by end(). Not < or <=. The only test that worksis!=. Soit's very common
to write aloop like:

| for(lter i = shapes.begin(); i != shapes.end(); i++)
This says. “take me through every element in the sequence.”

What do you do with the iterator to produce the element it’s selecting? Y ou dereference it
using (what else) the ‘*’ (which is actually an overloaded operator). What you get back is
whatever the container is holding. This container holds Shape*, so that’swhat *i produces. If
you want to send a message to the Shape, you must select that message with ->, so you write
the line:

| (*i)->drau();

This calls the draw() function for the Shape* the iterator is currently selecting. The
parentheses are ugly but necessary to produce the proper order of evaluation. As an
alternative, operator-> is defined so that you can say:

| i ->draw();

Chapter 15: Multiple Inheritance
154

Asthey are destroyed or in other cases where the pointers are removed, the STL containers do
not call delete for the pointers they contain. If you create an object on the heap with new and
place its pointer in a container, the container can't tell if that pointer is also placed inside
another container. So the STL just doesn’'t do anything about it, and puts the responsibility
squarely in your lap. The last lines in the program move through and delete every aobject in the
container so proper cleanup occurs.

It's very interesting to note that you can change the type of container that this program uses
with two lines. Instead of including <vector >, you include <list>, and in thefirst typedef you

say:
typedef std::|ist<Shape*> Contai ner;

instead of using a vector. Everything else goes untouched. Thisis possible not because of an
interface enforced by inheritance (thereisn’t any inheritance in the STL, which comesas a
surprise when you first seeit), but because the interface is enforced by a convention adopted
by the designers of the STL, precisely so you could perform this kind of interchange. Now
you can easily switch between vector and list and see which one works fastest for your needs.

Containers of strings

In the prior example, at the end of main(), it was necessary to move through the whole list
and delete all the Shape pointers.

for(lter j = shapes. begin();
j 1= shapes.end(); j++)
delete *j;

This highlights what could be seen as aflaw in the STL: there’s no facility in any of the STL
containers to automatically delete the pointers they contain, so you must do it by hand. It'sas
if the assumption of the STL designers was that containers of pointersweren't an interesting
problem, although | assert that it is one of the more common things you'll want to do.

Automatically deleting a pointer turns out to be a rather aggressive thing to do because of the
multiple membership problem. If a container holds a pointer to an object, it's not unlikely that
pointer could also be in another container. A pointer to an Aluminum object in alist of Trash
pointers could also residein alist of Aluminum pointers. If that happens, which list is
responsible for cleaning up that object —that is, which list “owns’ the object?

This question is virtually eliminated if the object rather than a pointer residesin the list. Then
it seems clear that when the list is destroyed, the objects it contains must also be destroyed.
Here, the STL shines, as you can see when creating a container of string objects. The
following example stores each incoming line asastring in avector <string>:

/1: CO4:StringVector.cpp
/1 A vector of strings
#include "../require. h"

Chapter 15: Multiple Inheritance
155

#i ncl ude <string>
#i ncl ude <vector>
#i ncl ude <fstreanp
#i ncl ude <i ostreane
#i ncl ude <iterator>
#i ncl ude <sstreanp
usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> strings;
string |line;
whil e(getline(in, line))
strings. push_back(line);
/1 Do sonething to the strings..
int i =1;
vector<string>: :iterator w
for(w = strings. begin();
w = strings.end(); w+) {
ostringstream ss;
SS << | ++4;
*w = ss.str() +": " + *w
}
/1 Now send them out:
copy(strings. begin(), strings.end(),
ostream.iterator<string>(cout, "\n"));
/1 Since they aren't pointers, string
/1 objects clean thenmsel ves up!
Y I~

Once the vector <string> called stringsis created, each line in the fileisread into astring
and put in the vector:

whil e(getline(in, line))
strings. push_back(!line);

The operation that’s being performed on thisfile isto add line numbers. A stringstream
provides easy conversion from an int to astring of characters representing that int.

Assembling string objectsis quite easy, since operator + is overloaded. Sensibly enough, the
iterator w can be dereferenced to produce a string that can be used as both an rvalue and an
Ivalue:

*w = ss.str() + + *w

Chapter 15: Multiple Inheritance
156

The fact that you can assign back into the container viathe iterator may seem a bit surprising
at first, but it’s atribute to the careful design of the STL.

Because the vector <string> contains the obj ects themselves, a number of interesting things
take place. First, no cleanup is necessary. Even if you were to put addresses of the string
objects as pointersinto other containers, it's clear that stringsisthe “master list” and
maintains ownership of the objects.

Second, you are effectively using dynamic object creation, and yet you never use new or
delete! That's because, somehow, it's all taken care of for you by the vector (thisis non-
trivial. You can try to figure it out by looking at the header files for the STL —all the codeis
there — but it’s quite an exercise). Thus your coding is significantly cleaned up.

The limitation of holding objects instead of pointers inside containersis quite severe: you
can’t upcast from derived types, thus you can’'t use polymorphism. The problem with
upcasting objects by value is that they get sliced and converted until their type is completely
changed into the base type, and there's no remnant of the derived type left. It's pretty safe to
say that you never want to do this.

Inheriting from STL containers

The power of instantly creating a sequence of elementsis amazing, and it makes you realize
how much time you’ ve spent (or rather, wasted) in the past solving this particular problem.
For example, many utility programsinvolve reading afile into memory, modifying the file
and writing it back out to disk. One might as well take the functionality in StringVector .cpp
and package it into a class for later reuse.

Now the question is: do you create a member object of type vector, or do you inherit? A
general guidelineisto aways prefer composition (member objects) over inheritance, but with
the STL thisis often not true, because there are so many existing algorithms that work with
the STL types that you may want your new type to be an STL type. So thelist of strings
should also be avector, thusinheritance is desired.

//: CO4:FileEditor.h
// File editor too
#i f ndef FI LEEDI TOR _H
#defi ne FI LEEDI TOR H
#i ncl ude <string>

#i ncl ude <vector>

#i ncl ude <i ostreanr

class FileEditor
public std::vector<std::string> {
public:

Fi |l eEdi tor(char* fil enane);

Chapter 15: Multiple Inheritance
157

void wite(std::ostream& out = std::cout);

}1
#endif // FILEEDITORH ///:~

Note the careful avoidance of aglobal using namespace std statement here, to prevent the
opening of the std namespace to every file that includes this header.

The constructor opens the file and reads it into the FileEditor, and write() puts the vector of
string onto any ostream. Noticein write() that you can have a default argument for a
reference.

Theimplementation is quite simple:

/1: CO4:FileEditor.cpp {G
#i nclude "Fil eEditor.h"
#include "../require. h"

#i ncl ude <fstreanp

usi ng namespace std;

FileEditor::FileEditor(char* filenanme) {
ifstreamin(filenane);
assure(in, filenane);
string |ine;
whil e(getline(in, line))
push_back(li ne);
}

/1 Could al so use copy() here:
void FileEditor::wite(ostrean& out) ({
for(iterator w = begin(); w!= end(); wkt)
out << *w << endl
Y I~

The functions from StringVector .cpp are simply repackaged. Often thisisthe way classes
evolve — you start by creating a program to solve a particular application, then discover some
commonly-used functionality within the program that can be turned into a class.

The line numbering program can now be rewritten using FileEditor:

[1: CO4: FEdit Test. cpp

/1{L} FileEditor

/1 Test the FileEditor tool
#include "FileEditor. h"
#include "../require. h"

#i ncl ude <sstreanp

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
158

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
FileEditor file(argv[1]);
/1 Do sonething to the lines...
int i =1;
FileEditor::iterator w= file.begin();
while(w!= file.end()) {
ostringstream ss;
SS << | ++4;
*w = ss.str() +": " + *w
WH+;
}
/1 Now send themto cout:
file.wite();
Yy I~

Now the operation of reading the file isin the constructor:

| FileEditor file(argv[1]);

and writing happens in the single line (which defaults to sending the output to cout):
| file.wite();

The bulk of the program isinvolved with actually modifying the file in memory.

A plethoraof iterators

As mentioned earlier, the iterator is the abstraction that allows a piece of code to be generic,
and to work with different types of containers without knowing the underlying structure of
those containers. Every container produces iterators. Y ou must always be able to say:

Cont ai ner Type: :iterator
Cont ai ner Type: : const _i terator

to produce the types of the iterators produced by that container. Every container has abegin()
method that produces an iterator indicating the beginning of the elementsin the container, and
an end() method that produces an iterator which is the as the past-the-end value of the
container. If the container is const, begin() and end() produce const iterators.

Every iterator can be moved forward to the next element using the oper ator ++ (an iterator
may be able to do more than this, as you shall see, but it must at least support forward
movement with operator ++).

The basic iterator is only guaranteed to be able to perform == and != comparisons. Thus, to
move an iterator it forward without running it off the end you say something like:

| while(it !'= pastEnd) {

Chapter 15: Multiple Inheritance
159

/1 Do sonething
it++;

}

Where pastEnd is the past-the-end value produced by the container’s end() member
function.

An iterator can be used to produce the element that it is currently selecting within a container
by dereferencing theiterator. This can take two forms. If it is an iterator and f() is a member
function of the objects held in the container that the iterator is pointing within, then you can
say either:

| (*it).f0);
or
| it->f();

Knowing this, you can create a template that works with any container. Here, the apply()
function template calls a member function for every object in the container, using a pointer to
member that is passed as an argument:

[1: CO4: Apply.cpp

/1 Using basic iterators
#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <iterator>
usi ng namespace std;

t enpl at e<cl ass Cont, class PtrMenfFun>
void apply(Cont& c, PtrMenFun f) {
typenane Cont::iterator it = c.begin();
while(it '= c.end()) {
(it->*f)(); /I Compact form
((*it).*f)(); // Alternate form
it++;
}
}

class Z {
int i;
public:
Z(int i) :i(ii) {}
void g() { i++ }
friend ostreamk
oper at or<<(ostrean& os, const Z& z) {
return os << z.i;

Chapter 15: Multiple Inheritance
160

}

b

int main() {
ostream.iterator<zZ> out(cout, " ");
vector<Zz> vz;
for(int i =0; i < 10; i++)

vz. push_back(Z(i));
copy(vz. begin(), vz.end(), out);
cout << endl
apply(vz, &Z::9);
copy(vz. begin(), vz.end(), out);
Y I~

Because oper ator-> is defined for STL iterators, it can be used for pointer-to-member
dereferencing (in the following chapter you'll learn a more elegant way to handle the problem
of applying a member function or ordinary function to every object in a container).

Much of the time, thisis all you need to know about iterators — that they are produced by
begin() and end(), and that you can use them to move through a container and select
elements. Many of the problems that you solve, and the STL algorithms (covered in the next
chapter) will allow you to just flail away with the basics of iterators. However, things can at
times become more subtle, and in those cases you need to know more about iterators. The rest
of this section gives you the details.

lterators in reversible containers

All containers must produce the basic iterator. A container may also be reversible, which
means that it can produce iterators that move backwards from the end, as well asthe iterators
that move forward from the beginning.

A reversible container has the methods rbegin() (to produce areverse iterator selecting the
end) and rend() (to produce areverse_iterator indicating “one past the beginning”). If the
container is const then rbegin() and rend() will produce const_reverse iterators.

All the basic sequence containers vector, deque and list are reversible containers. The
following example uses vector, but will work with deque and list aswell:

/1: CO4: Reversible.cpp

/1 Using reversible containers
#include "../require. h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
161

int main() {

ifstreamin("Reversible.cpp");
assure(in, "Reversible.cpp");
string |ine;
vector<string> |lines;
whil e(getline(in, line))

I'i nes. push_back(Iline);
vector<string>::reverse_ iterator r;

for(r = lines.rbegin(); r !'=1lines.rend(); r++)
cout << *r << endl;
Y I~

Y ou move backward through the container using the same syntax as moving forward through
acontainer with an ordinary iterator.

The associative containers set, multiset, map and multimap are also reversible. Using
iterators with associative containersis a bit different, however, and will be delayed until those
containers are more fully introduced.

|terator categories

Theiterators are classified into different “ categories’ which describe what they are capable of
doing. The order in which they are generally described moves from the categories with the
most restricted behavior to those with the most powerful behavior.

Input: read-only, one pass

The only predefined implementations of input iterators are istream_iterator and
istreambuf_iterator, to read from an istream. As you can imagine, an input iterator can only
be dereferenced once for each element that’s selected, just as you can only read a particular
portion of an input stream once. They can only move forward. Thereis a special constructor
to define the past-the-end value. In summary, you can dereference it for reading (once only
for each value), and move it forward.

Output: write-only, one pass

Thisisthe complement of an input iterator, but for writing rather than reading. The only
predefined implementations of output iterators are ostream_iterator and
ostreambuf_iterator, to write to an ostream, and the less-commonly-used
raw_storage iterator. Again, these can only be dereferenced once for each written value,
and they can only move forward. There is no concept of aterminal past-the-end value for an
output iterator. Summarizing, you can dereference it for writing (once only for each value)
and move it forward.

Chapter 15: Multiple Inheritance
162

Forward: multiple read/write

The forward iterator contains all the functionality of both the input iterator and the output
iterator, plus you can dereference an iterator location multiple times, so you can read and
write to avalue multiple times. As the name implies, you can only move forward. There are
no predefined iterators that are only forward iterators.

Bidirectional: operator--

The bidirectional iterator has al the functionality of the forward iterator, and in addition it can
be moved backwards one location at atime using oper ator --.

Random-access. like a pointer

Finally, the random-access iterator has all the functionality of the bidirectiona iterator plusall
the functionality of a pointer (a pointer is a random-access iterator). Basically, anything you
can do with a pointer you can do with a random-access iterator, including indexing with

oper ator[], adding integral values to a pointer to move it forward or backward by a number
of locations, and comparing one iterator to another with <, >=, etc.

Is this really important?

Why do you care about this categorization? When you're just using containersin a
straightforward way (for example, just hand-coding all the operations you want to perform on
the abjects in the container) it usually doesn’t impact you too much. Things either work or
they don’t. The iterator categories become important when:

1. You use some of the fancier built-in iterator types that will be demonstrated shortly. Or
you graduate to creating your own iterators (this will also be demonstrated, later in this
chapter).

2. Youusethe STL algorithms (the subject of the next chapter). Each of the algorithms have
requirements that they place on the iterators that they work with. Knowledge of the
iterator categories is even more important when you create your own reusable algorithm
templates, because the iterator category that your algorithm requires determines how
flexible the algorithm will be. If you only require the most primitive iterator category
(input or output) then your algorithm will work with everything (copy() is an example of
this).

Predefined iterators

The STL has a predefined set of iterator classes that can be quite handy. For example, you've
already seen reverse_iterator (produced by calling rbegin() and rend() for al the basic
containers).

The insertion iterators are necessary because some of the STL agorithms— copy() for
example — use the assignment oper ator = in order to place objects in the destination container.

Chapter 15: Multiple Inheritance
163

Thisis a problem when you're using the algorithm to fill the container rather than to overwrite
items that are already in the destination container. That is, when the spaceisn’t aready there.
What the insert iterators do is change the implementation of the oper ator= so that instead of
doing an assignment, it callsa“push” or “insert” function for that container, thus causing it to
allocate new space. The constructors for both back_insert_iterator and
front_insert_iterator take a basic sequence container object (vector, deque or list) astheir
argument and produce an iterator that calls push_back() or push_front(), respectively, to
perform assignment. The shorthand functions back_inserter () and front_inserter () produce
the same objects with alittle less typing. Since all the basic sequence containers support
push_back(), you will probably find yourself using back_inserter () with some regularity.

Theinsert_iterator allows you to insert elementsin the middle of the sequence, again
replacing the meaning of operator =, but thistime with insert(') instead of one of the “push”
functions. Theinsert() member function requires an iterator indicating the place to insert
before, sotheinsert_iterator requiresthisiterator in addition to the container object. The
shorthand function inserter () produces the same object.

The following example shows the use of the different types of inserters:

[1: CO4:Inserters.cpp

/] Different types of iterator inserters
#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#include <list>

#i nclude <iterator>

usi ng nanmespace std;

int a[] ={ 1, 3, 5 7, 11, 13, 17, 19, 23 };

t empl at e<cl ass Cont >
void frontlnsertion(Cont& ci) {
copy(a, a + sizeof(a)/sizeof(int),
front _inserter(ci));
copy(ci.begin(), ci.end(),
ostream.iterator<int>(cout, " "));
cout << endl

}

t empl at e<cl ass Cont >
voi d backlnsertion(Cont& ci) {
copy(a, a + sizeof(a)/sizeof(int),
back_inserter(ci));
copy(ci.begin(), ci.end(),
ostream.iterator<int>(cout, " "));

Chapter 15: Multiple Inheritance
164

cout << endl;

}

t enpl at e<cl ass Cont >
void mdlnsertion(Cont& ci) {
typenane Cont::iterator it = ci.begin();
it++; it++ 0t ++
copy(a, a + sizeof(a)/(sizeof(int) * 2),
inserter(ci, it));
copy(ci.begin(), ci.end(),
ostreamiterator<int>(cout, " "));
cout << endl

}

int main() {
deque<i nt > di
list<int> [Ii;
vect or<i nt > vi
/1 Can't use a front _inserter() with vector
frontlnsertion(di);
frontlnsertion(li);
di.clear();
li.clear();
backl nsertion(vi);
backl nsertion(di);
backl nsertion(li);
m dlnsertion(vi);
m dl nsertion(di);
m dlnsertion(li);

Y I~

Since vector does not support push_front(), it cannot produce afront_insertion_iterator.
However, you can see that vector does support the other two types of insertion (even though,
asyou shall seelater, insert() is not avery efficient operation for vector).

|O stream iterators

Y ou've aready seen some use of the ostream _iterator (an output iterator) in conjunction
with copy() to place the contents of a container on an output stream. There is a corresponding
istream_iterator (an input iterator) which allows you to “iterate” aset of objects of a
specified type from an input stream. An important difference between ostream_iterator and
istream_iterator comes from the fact that an output stream doesn’t have any concept of an
“end,” since you can always just keep writing more elements. However, an input stream
eventually terminates (for example, when you reach the end of afil€) so there needsto be a

Chapter 15: Multiple Inheritance
165

way to represent that. Anistream_iterator has two constructors, one that takes an istream
and produces the iterator you actually read from, and the other which is the default
constructor and produces an object which is the past-the-end sentinel. In the following
program this object is named end:

[]: CO4:Streamt.cpp

/'l lterators for istreanms and ostreans
#include "../require. h"

#i ncl ude <i ostreanr

#i ncl ude <fstreanp

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

int main() {
ifstreamin("Streamt.cpp");
assure(in, "Streamt.cpp");
istreamiterator<string> init(in), end;
ostream.iterator<string> out(cout, "\n");
vector<string> vs;
copy(init, end, back_inserter(vs));
copy(vs. begin(), vs.end(), out);
*out ++ = vs[O0];
*out++ = "That's all, folks!";

Y I~

When in runs out of input (in this case when the end of the file is reached) then init becomes
equivalent to end and the copy() terminates.

Because out isan ostream_iter ator <string>, you can simply assign any string object to the
dereferenced iterator using oper ator= and that string will be placed on the output stream, as
seen in the two assignments to out. Because out is defined with a newline as its second
argument, these assignments also cause a newline to be inserted along with each assignment.

Whileit is possible to create an istream_iterator <char> and ostr eam_iter ator <char >, these
actualy parse the input and thus will for example automatically eat whitespace (spaces, tabs
and newlines), which is not desirable if you want to manipulate an exact representation of an
istream. Instead, you can use the special iteratorsistreambuf_iterator and
ostreambuf_iterator, which are designed strictly to move characters!®. Although these are

16 These were actual ly created to abstract the “locale” facets away from iostreams, so that
locale facets could operate on any sequence of characters, not only iostreams. Locales allow
iostreams to easily handle culturally-different formatting (such as representation of money),
and are beyond the scope of this book.

Chapter 15: Multiple Inheritance
166

templates, the only template arguments they will accept are either char or wchar _t (for wide
characters). The following example allows you to compare the behavior of the stream iterators
vs. the streambuf iterators:

[]: CO4: Streanbuflterator.cpp

/'l istreanmbuf iterator & ostreanbuf iterator
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i nclude <iterator>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main() {
ifstreamin("Streanbuflterator.cpp");
assure(in, "Streanbuflterator.cpp");
/1 Exact representation of stream
i streanbuf _iterator<char> isb(in), end;
ost reanmbuf _iterator<char> osb(cout);
whil e(isb !'= end)
*osb++ = *isb++; // Copy 'in'" to cout
cout << endl
i fstreamin2("Streanbuflterator.cpp");
/1 Strips white space:
i stream.iterator<char> is(in2), end2;
ostream.iterator<char> os(cout);
while(is !'= end2)
*0S++ = *jS++;
cout << endl
Y I~

The stream iterators use the parsing defined by istream:: oper ator >>, which is probably not
what you want if you are parsing characters directly —it’sfairly rare that you would want all
the whitespace stripped out of your character stream. Y ou'll virtually always want to use a
streambuf iterator when using characters and streams, rather than a stream iterator. In
addition, istream:: oper ator >> adds significant overhead for each operation, so it is only
appropriate for higher-level operations such as parsing floating-point numbers.1”

17 amindebted to Nathan Myers for explaining thisto me.

Chapter 15: Multiple Inheritance
167

Manipulating raw storage

Thisisalittle more esoteric and is generally used in the implementation of other Standard
Library functions, but it is nonetheless interesting. Theraw_storage iterator isdefinedin
<algorithm> and is an output iterator. It is provided to enable algorithmsto store their results
into uninitialized memory. The interface is quite simple: the constructor takes an output
iterator that is pointing to the raw memory (thusit is typically a pointer) and the operator=
assigns an object into that raw memory. The template parameters are the type of the output
iterator pointing to the raw storage, and the type of object that will be stored. Here's an
example which creates Noisy objects (you'll be introduced to the Noisy class shortly; it's not
necessary to know its details for this example):

/1: CO4: RawsSt oragel terator. cpp

/1 Denobnstrate the raw storage_ iterator
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreanp

#i nclude <iterator>

#i ncl ude <al gorithne

usi ng namespace std;

int main() {
const int quantity = 10;
/1 Create raw storage and cast to desired type:
Noi sy* np =
(Noi sy*)new char[quantity * sizeof (Noisy)];
raw st orage_iterator<Noi sy*, Noisy> rsi(np);
for(int i =0; i < quantity; i++)
*rsi++ = Noisy(); // Place objects in storage
cout << endl;
copy(np, np + quantity,
ostream.iterator<Noi sy>(cout, " "));
cout << endl;
/1 Explicit destructor call for cleanup:
for(int j =0; j < quantity; j++)
(&np[j])->~Noisy();
/'l Rel ease raw storage:
del ete (char*)np;
Y I~

To maketheraw_storage iterator template happy, the raw storage must be of the same type
as the objects you're creating. That’s why the pointer from the new array of char iscast to a
Noisy*. The assignment operator forces the objects into the raw storage using the copy-
constructor. Note that the explicit destructor call must be made for proper cleanup, and this
also allows the objects to be deleted one at atime during container manipulation.

Chapter 15: Multiple Inheritance
168

Basic sequences:
vector, list & deque

If you take a step back from the STL containers you'll see that there are really only two types
of container: sequences (including vector, list, deque, stack, queue, and priority_queue)
and associations (including set, multiset, map and multimap). The sequences keep the
objects in whatever sequence that you establish (either by pushing the objects on the end or
inserting them in the middle).

Since al the sequence containers have the same basic goal (to maintain your order) they seem
relatively interchangeable. However, they differ in the efficiency of their operations, so if you
are going to manipulate a sequence in a particular fashion you can choose the appropriate
container for those types of manipulations. The “basic” sequence containers are vector, list
and deque — these actually have fleshed-out implementations, while stack, queue and
priority_queue are built on top of the basic sequences, and represent more speciaized uses
rather than differencesin underlying structure (stack, for example, can be implemented using
adeque, vector or list).

So far inthisbook | have been using vector as acatch-all container. This was acceptable
because I ve only used the simplest and safest operations, primarily push_back() and
operator|[]. However, when you start making more sophisticated uses of containersit
becomes important to know more about their underlying implementations and behavior, so
you can make the right choices (and, as you'll see, stay out of trouble).

Basi ¢ sequence operations

Using atemplate, the following example shows the operations that all the basic sequences
(vector, deque or list) support. Asyou shall learn in the sections on the specific sequence
containers, not all of these operations make sense for each basic sequence, but they are
supported.

/1: CO04: Basi cSequenceQOper ati ons. cpp

/1 The operations available for all the
/1 basic sequence Contai ners.

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#incl ude <list>

usi ng namespace std;

t enpl at e<t ypename Cont ai ner >
void print(Container& c, char* s = "") {

Chapter 15: Multiple Inheritance
169

cout << s << << endl

if(c.empty()) {
cout << "(empty)" << endl

return;
}
typenane Container::iterator it;
for(it = c.begin(); it !'=c.end(); it++)

cout << *it << ;
cout << endl
cout << "size() << c.size()
<< " max_size() "<< c.nmax_size()
<< " front() " << c.front()
<< " back() " << c.back() << endl

}

t enpl at e<t ypenane Contai ner O | nt >
voi d basicOps(char* s) {

cout << "------- "< s << m-mm- " << endl
typedef ContainerOint G
G c;

print(c, "c after default constructor");

G c2(10, 1); // 10 elements, values all 1

print(c2, "c2 after constructor(10,1)");

int ia[] ={ 1, 3, 5, 7, 9};

const int iasz = sizeof(ia)/sizeof(*ia);

/1 Initialize with begin & end iterators:

C c3(ia, ia + iasz);

print(c3, "c3 after constructor(iter,iter)");

C c4(c2); /Il Copy-constructor

print(c4, "c4 after copy-constructor(c2)");

c = c2; // Assignnent operator

print(c, "c after operator=c2");

c.assign(10, 2); // 10 elenments, values all 2

print(c, "c after assign(10, 2)");

/1 Assign with begin & end iterators:

c.assign(ia, ia + iasz);

print(c, "c after assign(iter, iter)");

cout << "c using reverse iterators:" << endl

typenane Ci::reverse_iterator rit = c.rbegin();

while(rit I'= c.rend())
cout << *rit++ << " ",

cout << endl

c.resize(4);

Chapter 15: Multiple Inheritance
170

print(c, "c after resize(4)");
c. push_back(47);
print(c, "c after push_back(47)");
c. pop_back();
print(c, "c after pop_back()");
typenane Ci::iterator it = c.begin();
it++; it++;
c.insert(it, 74);
print(c, "c after insert(it, 74)");
it = c.begin();
it++;
c.insert(it, 3, 96);
print(c, "c after insert(it, 3, 96)");
it = c.begin();
it++;
c.insert(it, c3.begin(), c3.end());
print(c, "c after insert("

"it, c3.begin(), c3.end())");
it = c.begin();
it++;
c.erase(it);
print(c, "c after erase(it)")
typenane Ci::iterator it2 =
it++;
it2++; it2++; it2++; it2++; it2++
c.erase(it, it2);
print(c, "c after erase(it, it2)");
c.swap(c2);
print(c, "c after swap(c2)");
c.clear();
print(c, "c after clear()");

i = c. begin();

}

int main() {
basi cOps<vector<int> >("vector");
basi cOps<deque<i nt> >("deque");
basi cOps<list<int> >("list");

Y oI~

The first function template, print(), demonstrates the basic information you can get from any
sequence container: whether it’s empty, its current size, the size of the largest possible
container, the element at the beginning and the element at the end. Y ou can also see that every
container has begin(') and end(') methods that return iterators.

Chapter 15: Multiple Inheritance
171

The basicOps() function tests everything else (and in turn calls print()), including a variety
of constructors: default, copy-constructor, quantity and initial value, and beginning and
ending iterators. There's an assignment oper ator = and two kinds of assign() member
functions, one which takes a quantity and initial value and the other which take a beginning
and ending iterator.

All the basic sequence containers are reversible containers, as shown by the use of the
rbegin(’) and rend() member functions. A sequence container can be resized, and the entire
contents of the container can be removed with clear ().

Using an iterator to indicate where you want to start inserting into any sequence container,
you can insert() asingle element, a number of elementsthat all have the same value, and a
group of elements from another container using the beginning and ending iterators of that
group.

To erase() asingle element from the middle, use an iterator; to erase() arange of elements,
use apair of iterators. Notice that since alist only supports bidirectional iterators, all the
iterator motion must be performed with increments and decrements (if the containers were
limited to vector and deque, which produce random-access iterators, then oper ator + and
oper ator - could have been used to move the iterators in big jumps).

Although both list and deque support push_front(') and pop_front(), vector does not, so the
only member functions that work with all three are push_back() and pop_back().

The naming of the member function swap() isalittle confusing, since there's also a non-
member swap() algorithm that switches two elements of a container. The member swap(),
however, swaps everything in one container for another (if the containers hold the same type),
effectively swapping the containers themselves. There's a'so a non-member version of this
function.

The following sections on the sequence containers discuss the particulars of each type of
container.

vector

The vector isintentionally made to look like a souped-up array, since it has array-style
indexing but also can expand dynamically. vector is so fundamentally useful that it was
introduced in avery primitive way early in this book, and used quite regularly in previous
examples. This section will give amore in-depth look at vector.

To achieve maximally-fast indexing and iteration, the vector maintainsits storage asasingle
contiguous array of objects. Thisisacritical point to observe in understanding the behavior of
vector. It means that indexing and iteration are lighting-fast, being basically the same as
indexing and iterating over an array of objects. But it also means that inserting an object
anywhere but at the end (that is, appending) is not really an acceptable operation for avector.
It also means that when avector runs out of pre-allocated storage, in order to maintain its

Chapter 15: Multiple Inheritance
172

contiguous array it must allocate awhole new (larger) chunk of storage elsewhere and copy
the objects to the new storage. This has a number of unpleasant side effects.

Cost of overflowing allocated storage

A vector starts by grabbing a block of storage, asif it's taking a guess at how many objects
you planto put init. Aslong as you don’t try to put in more objects than can be held in the
initial block of storage, everything is very rapid and efficient (note that if you do know how
many objects to expect, you can pre-allocate storage using reserve()). But eventually you
will put in one too many objects and, unbeknownst to you, the vector responds by:

1. Allocating a new, bigger piece of storage

2. Copying all the objects from the old storage to the new (using the copy-constructor)
3. Destroying al the old objects (the destructor is called for each one)

4. Releasing the old memory

For complex objects, this copy-construction and destruction can end up being very expensive
if you overfill your vector alot. To see what happens when you'refilling avector, hereisa
class that prints out information about its creations, destructions, assignments and copy-
constructions:

/1: CO4: Noisy.h

/1 A class to track various object activities
#i f ndef NO SY_H

#defi ne NO SY_H

#i ncl ude <i ostreanp

cl ass Noi sy {
static long create, assign, copycons, destroy;
long id;

publi c:

Noi sy() : id(create++) {
std::cout << "d[" << id << "]";

}

Noi sy(const Noisy& rv) : id(rv.id) {
std::cout << "c[" << id << "]";
copycons++;

}

Noi sy& oper at or =(const Noi sy& rv) {
std::cout << "(" << id << ")=[" <<

rv.id << "1";
id=rv.id;
assi gn++;

Chapter 15: Multiple Inheritance
173

return *this;

}

friend boo

operator<(const Noisy& Iv, const Noisy& rv) {
return lv.id < rv.id;

}

friend boo
operat or==(const Noi sy& |lv, const Noisy& rv) {

return lv.id == rv.id;

}

~Noi sy() {
std::cout << "~[" << id << "]":
destroy++,

}

friend std::ostream&

operator<<(std::ostream& os, const Noisy& n) {
return os << n.id;

}

friend class Noi syReport;

}s

struct Noi syGen {
Noi sy operator()() { return Noisy(); }
b

/1 A singleton. WII automatically report the
/1 statistics as the programterni nates:
cl ass Noi syReport {
static Noi syReport nr;
Noi syReport () {} // Private constructor
public:
~Noi syReport () {
std::cout << "\M-------miaiaos \n"
<< "Noi sy creations: " << Noisy::create
<< "\ nCopy- Constructions: "
<< Noi sy: : copycons
<< "\ nAssignnents: " << Noisy::assign
<< "\ nDestructions: " << Noisy::destroy
<< std::endl
}
b

/1 Because of these this file can only be used

Chapter 15: Multiple Inheritance
174

/1 in sinple test situations. Mouwve themto a

/1 .cpp file for nore conpl ex prograns:

I ong Noisy::create = 0, Noisy::assign
Noi sy:: copycons = 0, Noisy::destroy

Noi syReport Noi syReport::nr;

#endif // NOSY H///:~

Oy
0;

Each Noisy object hasits own identifier, and there are static variables to keep track of al the
creations, assignments (using oper ator =), copy-constructions and destructions. Theid is
initialized using the cr eate counter inside the default constructor; the copy-constructor and
assignment operator take their id values from the rvalue. Of course, with oper ator = the lvalue
is aready an initialized object so the old value of id is printed before it is overwritten with the
id from the rvalue.

In order to support certain operations like sorting and searching (which are used implicitly by
some of the containers), Noisy must have an oper ator < and oper ator==. These simply
compare theid values. The operator << for ostream follows the standard form and simply
printstheid.

NoisyGen produces a function object (since it has an operator ()) that is used to
automeatically generate Noisy objects during testing.

NoisyReport isatype of class called asingleton, whichis a*“design pattern” (these are
covered more fully in Chapter XX). Here, the goa isto make sure thereis one and only one
NoisyReport object, because it is responsible for printing out the results at program
termination. It has a private constructor so no one else can make a NoisyReport object, and a
single static instance of NoisyReport called nr. The only executable statements are in the
destructor, which is called as the program exits and the static destructors are called; this
destructor prints out the statistics captured by the static variablesin Noisy.

The one snag to this header file is the inclusion of the definitions for the statics at the end. If
you include this header in more than one place in your project, you'll get multiple-definition
errors at link time. Of course, you can put the static definitionsin a separate cpp file and link
itin, but that isless convenient, and since Noisy isjust intended for quick-and-dirty
experiments the header file should be reasonable for most situations.

Using Noisy.h, the following program will show the behaviors that occur when avector
overflowsiits currently allocated storage:

/1: CO4: VectorOverfl ow. cpp

/1 Shows the copy-construction and destruction
/1 That occurs when a vector nust reallocate
/1 (It maintains a linear array of elenments)

#i ncl ude "Noi sy. h"

#include "../require. h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
175

#i ncl ude <string>
#i ncl ude <cstdlib>
usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
int size = 1000;
if(argc >= 2) size = atoi(argv[1]);
vect or <Noi sy> vn;
Noi sy n;
for(int i =0; i < size; i++)
vn. push_back(n);
cout << "\n cleaning up \n";
Y I~

Y ou can either use the default value of 1000, or use your own value by putting it on the
command-line.

When you run this program, you' |l see a single default constructor call (for n), then alot of
copy-constructor calls, then some destructor calls, then some more copy-constructor calls, and
so on. When the vector runs out of space in the linear array of bytesit has allocated, it must
(to maintain all the objectsin alinear array, which is an essential part of itsjob) get abigger
piece of storage and move everything over, copying first and then destroying the old objects.
Y ou can imagine that if you store alot of large and complex objects, this process could
rapidly become prohibitive.

There are two solutions to this problem. The nicest one requires that you know beforehand
how many objects you' re going to make. In that case you can use reserve() to tell the vector
how much storage to pre-allocate, thus eliminating all the copies and destructions and making
everything very fast (especially random access to the objects with operator[]). Note that the
use of reserve() isdifferent from using the vector constructor with an integral first argument;
the latter initializes each element using the default copy-constructor.

However, in the more general case you won't know how many objects you' Il need. If vector
reallocations are slowing things down, you can change sequence containers. Y ou could use a
list, but asyou'll see, the deque allows speedy insertions at either end of the sequence, and
never needs to copy or destroy objects asit expandsits storage. The deque also allows
random access with operator[], but it's not quite as fast as vector’soperator[]. Sointhe
case where you're creating all your objectsin one part of the program and randomly accessing
them in another, you may find yourself filling a deque, then creating avector from the deque
and using the vector for rapid indexing. Of course, you don’'t want to program this way
habitually, just be aware of these issues (avoid premature optimization).

Thereisadarker side to vector’sreallocation of memory, however. Because vector keepsits
objectsin anice, neat array (allowing, for one thing, maximally-fast random access), the
iterators used by vector are generally just pointers. Thisisagood thing — of all the sequence
containers, these pointers allow the fastest selection and manipulation. However, consider

Chapter 15: Multiple Inheritance
176

what happens when you' re holding onto an iterator (i.e. a pointer) and then you add the one
additional object that causes the vector to reallocate storage and move it elsewhere. Y our
pointer is now pointing off into nowhere:

/1: CO4: Vect or Cor eDunp. cpp

/!l How to break a program using a vector
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
vector<int> vi (10, 0);

ostream.iterator<int> out(cout, " ");
copy(vi.begin(), vi.end(), out);
vector<int>::iterator i = vi.begin();

cout << "\n i:
*I = 47,
copy(vi.begin(), vi.end(), out);
/! Force it to nmove nmenory (could al so just add
/1 enough objects):
vi.resize(vi.capacity() + 1);
/1 Now i points to wong nmenory:
cout << "\ni: " << long(i) << endl
cout << "vi.begin(): " << long(vi.begin());
*i = 48; /] Access violation
Y I~

If your program is breaking mysterioudly, look for places where you hold onto an iterator
while adding more objectsto avector. You'll need to get a new iterator after adding
elements, or use operator|[] instead for element selections. If you combine the above
observation with the awareness of the potential expense of adding new objectsto avector,
you may conclude that the safest way to use oneisto fill it up al at once (ideally, knowing
first how many objects you'll need) and then just use it (without adding more objects)
elsewhere in the program. Thisis the way vector has been used in the book up to this point.

<< long(i) << endl;

Y ou may observe that using vector asthe “basic” container in the earlier chapters of this book
may not be the best choice in all cases. Thisis afundamental issue in containers, and in data
structures in general: the “best” choice varies according to the way the container is used. The
reason vector has been the “best” choice up until now isthat it looks alot like an array, and
was thus familiar and easy for you to adopt. But from now on it’s a so worth thinking about
other issues when choosing containers.

Inserting and erasing elements

The vector is most efficient if:

Chapter 15: Multiple Inheritance
177

1. Youreserve() the correct amount of storage at the beginning so the vector never hasto
reallocate.

2. You only add and remove elements from the back end.

Itis possible to insert and erase elements from the middle of avector using an iterator, but the
following program demonstrates what a bad ideaiit is:

/1: CO4: Vectorlnsert AndEr ase. cpp

/1 Erasing an element froma vector
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main() {
vect or <Noi sy> v;
v.reserve(1ll);
cout << "11 spaces have been reserved" << endl
generate_n(back_inserter(v), 10, NoisyGen());
ostream.iterator<Noisy> out(cout, " ");
cout << endl
copy(v. begin(), v.end(), out);
cout << "Inserting an el enent:’
vector<Noi sy>::iterator it =

v.begin() + v.size() / 2; /] Mddle

v.insert(it, Noisy());
cout << endl
copy(v. begin(), v.end(), out);
cout << "\nErasing an elenent:" << endl
/1 Cannot use the previous value of it:
it = v.begin() + v.size() / 2
v.erase(it);
cout << endl
copy(v. begin(), v.end(), out);
cout << endl

Y I~

<< endl ;

When you run the program you' |l see that the call to reserve() really does only alocate
storage — no constructors are called. The generate n() call is pretty busy: each call to
NoisyGen::oper ator () results in a construction, a copy-construction (into the vector) and a
destruction of the temporary. But when an object is inserted into the vector in the middle, it
must shove everything down to maintain the linear array and — since there is enough space — it
does this with the assignment operator (if the argument of reserve() is 10 instead of eleven

Chapter 15: Multiple Inheritance
178

then it would have to reallocate storage). When an object is erased from the vector, the
assignment operator is once again used to move everything up to cover the place that is being
erased (notice that this requires that the assignment operator properly cleans up the Ivalue).
Lastly, the object on the end of the array is deleted.

Y ou can imagine how enormous the overhead can become if objects are inserted and removed
from the middle of avector if the number of elementsislarge and the objects are
complicated. It's obviously a practice to avoid.

deque

The deque (double-ended-queue, pronounced “deck”) is the basic sequence container
optimized for adding and removing elements from either end. It also allows for reasonably
fast random access—it has an operator|] like vector. However, it does not have vector’s
constraint of keeping everything in asingle sequential block of memory. Instead, deque uses
multiple blocks of sequential storage (keeping track of al the blocks and their order in a
mapping structure). For this reason the overhead for a degque to add or remove elements at
either end is very low. In addition, it never needs to copy and destroy contained objects during
anew storage allocation (like vector does) so it is far more efficient than vector if you are
adding an unknown quantity of objects. This means that vector isthe best choice only if you
have a pretty good idea of how many objects you need. In addition, many of the programs
shown earlier in this book that use vector and push_back() might be more efficient with a
deque. Theinterface to dequeisonly sightly different from avector (degque hasa
push_front() and pop_front() while vector does not, for example) so converting code from
using vector to using dequeis amost trivial. Consider StringVector .cpp, which can be
changed to use deque by replacing the word “vector” with “deque”’ everywhere. The
following program adds parallel deque operations to the vector operationsin

StringVector .cpp, and performs timing comparisons:

/1: CO4: StringDeque. cpp
/1 Converted from StringVector.cpp
#include "../require. h"
#i ncl ude <string>

#i ncl ude <deque>

#i ncl ude <vector>

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <iterator>

#i ncl ude <sstreanp

#i ncl ude <cti ne>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);

Chapter 15: Multiple Inheritance
179

ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> vstrings;
deque<string> dstrings;
string |ine;
/1 Time reading into vector
clock t ticks = clock();
whil e(getline(in, line))
vstrings. push_back(line);
ticks = clock() - ticks;
cout << "Read into vector: " << ticks << endl
/1 Repeat for deque:
ifstreamin2(argv[1]);
assure(in2, argv[1]);
ticks = clock();
whil e(getline(in2, line))
dstrings. push_back(line);
ticks = clock() - ticks;
cout << "Read into deque: " << ticks << endl
/1 Now conpare indexing:
ticks = clock();

for(int i = 0; i < vstrings.size(); i++) {
ostringstream ss;
SS << i;
vstrings[i] = ss.str() + ": " + vstrings[i];
}
ticks = clock() - ticks;
cout << "Indexing vector: " << ticks << endl

ticks = clock();

for(int j =0; j < dstrings.size(); j++) {
ostringstream ss;
S§S << j;
dstrings[j] = ss.str() + ": " + dstrings[j];

ticks = clock() - ticks;

cout << "Indexing deqgeue: " << ticks << endl

/1 Conpare iteration

of stream tmpl("tnpl.tnmp"), tnp2("tnmp2.tmp");

ticks = clock();

copy(vstrings. begin(), vstrings.end(),
ostream.iterator<string>(tnmpl, "\n"));

ticks = clock() - ticks;

cout << "Iterating vector: " << ticks << endl

Chapter 15: Multiple Inheritance
180

ticks = clock();
copy(dstrings. begin(), dstrings.end(),
ostream.iterator<string>(tnmp2, "\n"));
ticks = clock() - ticks;
cout << "lIterating degeue: " << ticks << endl
Y I~

Knowing now what you do about the inefficiency of adding things to vector because of
storage reall ocation, you may expect dramatic differences between the two. However, ona 1.7
Megabyte text file one compiler’s program produced the following (measured in
platform/compiler specific clock ticks, not seconds):

Read into vector: 8350
Read i nto deque: 7690
I ndexi ng vector: 2360
| ndexi ng deqeue: 2480
Iterating vector: 2470
Iterating degeue: 2410

A different compiler and platform roughly agreed with this. It's not so dramatic, isit? This
points out some important issues:

1. We (programmers) are typically very bad at guessing where inefficiencies occur in our
programs.

2. Efficiency comes from a combination of effects— here, reading the linesin and
converting them to strings may dominate over the cost of the vector vs. deque.

3. Thestring classis probably fairly well-designed in terms of efficiency.

Of course, this doesn’t mean you shouldn't use a deque rather than a vector when you know
that an uncertain number of objectswill be pushed onto the end of the container. On the
contrary, you should —when you' re tuning for performance. But you should also be aware
that performance issues are usually not where you think they are, and the only way to know
for sure where your bottlenecks areis by testing. Later in this chapter there will be amore
“pure” comparison of performance between vector, deque and list.

Converting between sequences

Sometimes you need the behavior or efficiency of one kind of container for one part of your
program, and a different container’s behavior or efficiency in another part of the program. For
example, you may need the efficiency of adeque when adding objects to the container but the
efficiency of avector when indexing them. Each of the basic sequence containers (vector,
deque and list) has atwo-iterator constructor (indicating the beginning and ending of the
sequence to read from when creating a new object) and an assign() member function to read
into an existing container, o you can easily move objects from one sequence container to
another.

Chapter 15: Multiple Inheritance
181

The following example reads objects into a deque and then converts to a vector:

/1: CO04: DequeConversi on. cpp

/! Reading into a Deque, converting to a vector
#i ncl ude "Noi sy. h"

#i ncl ude <deque>

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

usi ng namespace std;

int main(int argc, char* argv[]) {
int size = 25;
if(argc >= 2) size = atoi(argv[1]);
deque<Noi sy> d;
generate_n(back_inserter(d), size, NoisyGen());
cout << "\n Converting to a vector(1)" << endl
vect or <Noi sy> v1(d. begin(), d.end());
cout << "\n Converting to a vector(2)" << endl
vect or <Noi sy> v2
v2.reserve(d.size());
v2.assign(d. begin(), d.end());
cout << "\n C eanup" << endl

Y I~

You can try various sizes, but you should see that it makes no difference — the objects are
simply copy-constructed into the new vectors. What' s interesting is that v1 does not cause
multiple allocations while building the vector, no matter how many elements you use. You
might initially think that you must follow the process used for v2 and preallocate the storage
to prevent messy reallocations, but the constructor used for v1 determines the memory need
ahead of time so thisis unnecessary.

Cost of overflowing allocated storage

It'silluminating to see what happens with a deque when it overflows a block of storage, in
contrast with Vector Over flow.cpp:

/1: CO4: DequeOverfl ow. cpp

/1 A deque is much nore efficient than a vector
/1 when pushing back a |l ot of elements, since it
/1 doesn't require copying and destroying.

#i ncl ude "Noi sy. h"

#i ncl ude <deque>

#i ncl ude <cstdlib>

Chapter 15: Multiple Inheritance
182

usi ng namespace std;

int main(int argc, char* argv[]) {
int size = 1000;
if(argc >= 2) size = atoi(argv[1]);
deque<Noi sy> dn;
Noi sy n;
for(int i =0; i < size; i++)
dn. push_back(n);
cout << "\n cleaning up \n";
Y I~

Here you will never see any destructors before the words “cleaning up” appear. Since the
deque allocates all its storage in blocksinstead of a contiguous array like vector, it never
needs to move existing storage (thus no additional copy-constructions and destructions occur).
It simply allocates a new block. For the same reason, the deque can just as efficiently add

elements to the beginning of the sequence, sinceiif it runs out of storage it (again) just

allocates a new block for the beginning. Insertions in the middle of a deque, however, could

be even messier than for vector (but not as costly).

Because a deque never movesits storage, a held iterator never becomes invalid when you add

new things to either end of a deque, as it was demonstrated to do with vector (in
Vector CoreDump.cpp). However, it's still possible (albeit harder) to do bad things:

/1: CO4: DequeCor eDunp. cpp

/1 How to break a program using a deque
#i ncl ude <queue>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
deque<i nt> di (100, O0);
/1 No problemiterating from beginning to end,
/1 even though it spans nultiple bl ocks:
copy(di . begin(), di.end(),
ostream.iterator<int>(cout, " "));
deque<int>::iterator i =// In the mddle:
di . begin() + di.size() / 2;
/1 Walk the iterator forward as you perform
/1 a lot of insertions in the mddle:
for(int j = 0; j < 1000; j++) {
cout << j << endl
di.insert(i++, 1); // Eventually breaks

}
Y 110~

Chapter 15: Multiple Inheritance
183

Of course, there are two things here that you wouldn’t normally do with adeque: first,
elements are inserted in the middle, which deque alows but isn't designed for. Second,
calling insert() repeatedly with the same iterator would not ordinarily cause an access
violation, but the iterator iswalked forward after each insertion. I'm guessing it eventually
walks off the end of ablock, but I’'m not sure what actually causes the problem.

If you stick to what dequeis best at — insertions and removal s from either end, reasonably
rapid traversals and fairly fast random-access using operator[] —you'll be in good shape.

Checked random-access

Both vector and deque provide two ways to perform random access of their elements: the
oper ator[], which you' ve seen already, and at(), which checks the boundaries of the
container that's being indexed and throws an exception if you go out of bounds. It does cost
moreto use at():

[1: CO4:1ndexi ngVsAt. cpp

/1 Conparing "at()" to operator][]
#include "../require. h"

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <i ostreanp

#i ncl ude <cti ne>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reM nArgs(argc, 1);
| ong count = 1000;
int sz = 1000;
if(argc >= 2) count = atoi(argv[1]);
if(argc >= 3) sz = atoi(argv[2]);
vector<int> vi(sz);
clock _t ticks = clock();
for(int il =0; il < count; il++)
for(int j =0; j < sz; j++4)
vi[jl;
cout << "vector[]" << clock() - ticks << endl
ticks = clock();
for(int i2 = 0; 12 < count; i2++)
for(int j = 0; j < sz; j++4)
vi.at(j);
cout << "vector::at()" << clock()-ticks <<endl
deque<i nt> di (sz);
ticks = clock();

Chapter 15: Multiple Inheritance
184

for(int i3 =0; i3 < count; i3++)
for(int j = 0; j < sz; j++4)
di[j];
cout << "deque[]" << clock() - ticks << endl
ticks = clock();
for(int i4 = 0; i4 < count; i4++)
for(int j = 0; j < sz; j++4)
di.at(j);
cout << "deque::at()" << clock()-ticks <<endl
/1 Denonstrate at() when you go out of bounds:
di.at(vi.size() + 1);
Y I~

Asyou'll learn in the exception-handling chapter, different systems may handle the uncaught
exception in different ways, but you'll know one way or another that something went wrong
with the program when using at(), whereasit’s possible to go blundering ahead using
operator[].

A list isimplemented as a doubly-linked list and is thus designed for rapid insertion and
removal of elementsin the middle of the sequence (whereas for vector and deque thisisa
much more costly operation). A list is so dow when randomly accessing elements that it does
not have an operator|]. It's best used when you're traversing a sequence, in order, from
beginning to end (or end to beginning) rather than choosing elements randomly from the

middle. Even then the traversal is significantly slower than either avector or adeque, but if
you aren't doing alot of traversals that won't be your bottleneck.

Another thing to be aware of with alist isthe memory overhead of each link, which requires a
forward and backward pointer on top of the storage for the actual object. Thus alist is a better
choice when you have larger objects that you'll be inserting and removing from the middle of
thelist. It's better not to use alist if you think you might be traversing it alot, looking for
objects, since the amount of time it takes to get from the beginning of the list —which is the
only place you can start unless you' ve already got an iterator to somewhere you know is
closer to your destination — to the abject of interest is proportional to the number of objects
between the beginning and that object.

The objectsin alist never move after they are created; “moving” alist element means
changing the links, but never copying or assigning the actual objects. This means that a held
iterator never moves when you add new thingsto alist as it was demonstrated to do in vector.
Here's an example using the Noisy class:

/1: CO4:ListStability.cpp
/1 Things don't nobve around in lists
#i ncl ude "Noi sy. h"

Chapter 15: Multiple Inheritance
185

#i ncl ude <list>

#i ncl ude <i ostreanp
#i ncl ude <al gorithne
usi ng namespace std;

int main() {
list<Noisy>|;
ostream.iterator<Noisy> out(cout, " ");
generate_n(back_inserter(l), 25, NoisyGen());
cout << "\n Printing the list:" << endl
copy(!l.begin(), I.end(), out);
cout << "\n Reversing the list:" << endl
. reverse();
copy(!l.begin(), I.end(), out);
cout << "\n Sorting the list:" << endl
| .sort();
copy(!l.begin(), I.end(), out);
cout << "\'n Swapping two el enents:" << endl
list<Noisy> :iterator itl, it2;
itl =it2 =1.begin();
it2++;
swap(*itl, *it2);
cout << endl
copy(!l.begin(), I.end(), out);
cout << "\n Using generic reverse(): " << endl
reverse(l.begin(), |.end());
cout << endl
copy(!l.begin(), I.end(), out);
cout << "\n C eanup" << endl
Y I~

Operations as seemingly radical asreversing and sorting the list require no copying of objects,
because instead of moving the objects, the links are simply changed. However, notice that
sort() and rever se() are member functions of list, so they have special knowledge of the
internals of list and can perform the pointer movement instead of copying. On the other hand,
the swap() function is a generic algorithm, and doesn’t know about list in particular and so it
uses the copying approach for swapping two elements. There are also generic algorithms for
sort() and reverse(), but if you try to use these you'll discover that the generic reverse()
performs lots of copying and destruction (so you should never useit with alist) and the
generic sort() simply doesn’t work because it requires random-access iterators that list
doesn’t provide (a definite benefit, since this would certainly be an expensive way to sort
compared to list’s own sort()). The generic sort() and reverse() should only be used with
arrays, vectors and degues.

Chapter 15: Multiple Inheritance
186

If you have large and complex objects you may want to choose alist first, especialy if
construction, destruction, copy-construction and assignment are expensive and if you are
doing things like sorting the objects or otherwise reordering them alot.

Special list operations
Thelist has some special operations that are built-in to make the best use of the structure of
thelist. You've already seen reverse() and sort(), and here are some of the othersin use:

/1: CO4: Li st Speci al Functi ons. cpp

#i ncl ude "Noi sy. h"

#i ncl ude <list>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

usi ng namespace std;
ostream.iterator<Noisy> out(cout, " ");

void print(list<Noisy>& In, char* comment = "") {
cout << "\n" << comment << ":\n";
copy(ln.begin(), In.end(), out);
cout << endl;

}

int main() {
typedef |ist<Noisy> LN
LN 11, 12, 13, 14

generate_n(back_inserter(l1), 6, NoisyGen());
generate_n(back_inserter(l12), 6, NoisyGen());
generate_n(back_inserter(l13), 6, NoisyGen());
generate_n(back _inserter(l4), 6, NoisyGen());

print(l1, "I1"); print(l2, "I2")
print(13, "I3"); print(l4, "14")
LN :iterator itl = 11.begin();
itl++; Pitdl++; it 1+
I1.splice(itl, 12);

print(l1, "I1 after splice(itl, 12)");
print(l2, "I2 after splice(itl, 12)");

LN :iterator it2 = 13.begin();

it2++; it2++; it2++

l1.splice(itl, 13, it2);

print(l1, "I1 after splice(itl, 13, it2)");

LN :iterator it3 = 14.begin(), itd =14.end();
it3++; it4--;

Chapter 15: Multiple Inheritance
187

l1.splice(itl, 14, it3, it4);

print(l1, "I1 after splice(itl,14,it3,itd4)");
Noi sy n;

LN 15(3, n);

generate_n(back_inserter(l5), 4, NoisyGen());
| 5. push_back(n);

print(l5, "I5 before renove()");
I 5. renove(l5.front());

print(l5, "I5 after renmove()");
| 1.sort(); I5.sort();

I 5. merge(l1);

print(l5, "I5 after |I5.nerge(l1)");
cout << "\'n C eanup" << endl;
Y I~

The print() function is used to display results. After filling four lists with Noisy objects, one
list is spliced into another in three different ways. In thefirst, the entire list 2 is spliced into |1
at theiterator it1. Notice that after the splice, 12 is empty — splicing means removing the
elements from the source list. The second splice inserts elements from |3 starting at it2 into 11
starting at it1. Thethird splice starts at it1 and uses elements from [4 starting at it3 and ending
at it4 (the seemingly-redundant mention of the source list is because the elements must be
erased from the source list as part of the transfer to the destination list).

The output from the code that demonstrates remove() shows that the list does not have to be
sorted in order for all the elements of a particular value to be removed.

Finally, if you merge() onelist with another, the merge only works sensibly if the lists have
been sorted. What you end up with in that case is a sorted list containing all the elements from
both lists (the source list is erased —that is, the elements are moved to the destination list).

There'salso aunique() member function that removes all duplicates, but only if thelist has
been sorted first:

//: CO4: Uni queList.cpp

/1 Testing list's unique() function
#i nclude <list>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int a[] ={ 1, 3, 1, 4, 1, 5 1, 6, 11};
const int asz = sizeof a / sizeof *a;

int main() {
/1 For output:
ostream.iterator<int> out(cout, " ");
list<int>1li(a, a + asz);

Chapter 15: Multiple Inheritance
188

[i.unique();
/1 Cops! No duplicates renoved:
copy(li.begin(), li.end(), out);
cout << endl
/1 Must sort it first:
li.sort();
copy(li.begin(), li.end(), out);
cout << endl
/1 Now unique() will have an effect:
[i.unique();
copy(li.begin(), li.end(), out);
cout << endl

Y I~

The list constructor used here takes the starting and past-the-end iterator from another
container, and it copies al the elements from that container into itself (asimilar constructor is
available for all the containers). Here, the “container” isjust an array, and the “iterators’ are
pointersinto that array, but because of the design of the STL it works with arraysjust as
easily as any other container.

If you run this program, you'll see that unique() will only remove adjacent duplicate
elements, and thus sorting is necessary before calling unique().

There are four additional list member functions that are not demonstrated here: aremove_if()
that takes a predicate which is used to decide whether an object should be removed, a
unique() that takes a binary predicate to perform uniqueness comparisons, amer ge() that
takes an additional argument which performs comparisons, and asort() that takes a
comparator (to provide a comparison or override the existing one).

list vs. set

Looking at the previous example you may note that if you want a sorted list with no
duplicates, a set can give you that, right? It'sinteresting to compare the performance of the
two containers:

/1: CO4:ListVsSet.cpp

/1 Conparing |ist and set performance
#i ncl ude <i ostreanp

#i ncl ude <list>

#i ncl ude <set >

#i ncl ude <al gorithne

#i ncl ude <cti nme>

#i ncl ude <cstdlib>

usi ng namespace std;

class Obj {

Chapter 15: Multiple Inheritance
189

int a[20]; // To take up extra space
int val;
public:

Obj () : val(rand() % 500) {}

friend boo

operator<(const hbj & a, const Obj& b) {
return a.val < b.val

}

friend boo

operator==(const Obj & a, const Ohj& b) {
return a.val == b.val

}

friend ostreamk

oper at or<<(ostream& os, const Obj& a) {
return os << a.val;

}
}s

t enpl at e<cl ass Cont ai ner >
void print(Container& c) {
typenane Container::iterator it;
for(it = c.begin(); it !'=c.end(); it++)
cout << *it << " "y
cout << endl

}

struct Obj Gen {
o] operator()() { return Obj(); }

};

int main() {
const int sz = 5000;
srand(tinme(0));
list<Ohj> Io;
clock t ticks = clock();
generate_n(back_inserter(lo), sz, jGen());
lo.sort();
| 0. uni que();
cout << "list:" << clock() - ticks << endl
set <bj > so
ticks = clock();
generate_n(inserter(so, so.begin()),
sz, jGen());

Chapter 15: Multiple Inheritance
190

cout << "set:" << clock() - ticks << endl;
print(lo);
print(so);

Y I~

When you run the program, you should discover that set is much faster than list. Thisis
reassuring — after all, it is set’s primary job description!

Swapping all basic sequences
It turns out that all basic sequences have a member function swap() that’s designed to switch
one seguence with another (however, this swap() is only defined for sequences of the same

type). The member swap() makes use of its knowledge of the internal structure of the
particular container in order to be efficient:

/1: CO4: Swappi ng. cpp

/1 Al basic sequence containers can be swapped
#i ncl ude "Noi sy. h"

#i nclude <list>

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

usi ng nanmespace std;

ostream.iterator<Noisy> out(cout, " ");

t empl at e<cl ass Cont >

void print(Cont& c, char* comment = "") {
cout << "\n" << coment << ": ";
copy(c. begin(), c.end(), out);
cout << endl

}

t enmpl at e<cl ass Cont >
voi d test Swap(char* cname) ({
Cont c1, c2,
generate_n(back_inserter(cl), 10, NoisyGen());
generate_n(back_inserter(c2), 5, NoisyGen());
cout << "\n" << cname << ":" << endl;
print(cl, "cl1"); print(c2, "c2");
cout << "\'n Swapping the " << cnane
<< ":" << endl;
cl.swap(c2);
print(cl, "cl1"); print(c2, "c2");

Chapter 15: Multiple Inheritance
191

}

int main() {
t est Swap<vect or <Noi sy> >("vector");
t est Swap<deque<Noi sy> >("deque");
t est Swap<li st <Noi sy> >("list");

Y I~

When you run this, you'll discover that each type of sequence container is able to swap one
sequence for another without any copying or assignments, even if the sequences are of
different sizes. In effect, you' re completely swapping the memory of one object for another.

The STL algorithms also contain aswap(), and when this function is applied to two
containers of the same type, it will use the member swap() to achieve fast performance.
Consequently, if you apply the sort() agorithm to a container of containers, you will find

that the performanceis very fast — it turns out that fast sorting of a container of containers was
adesign goal of the STL.

Robustness of lists

To break alist, you have to work pretty hard:

//: CO4:Li st Robust ness. cpp
/1l lists are harder to break
#include <list>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
list<int> li(100, 0);

list<int> :iterator i = 1i.begin();
for(int j =0; j <li.size() /I 2; j++4)
i ++;

/1 Walk the iterator forward as you perform
/1 a lot of insertions in the mddle:
for(int k = 0; k < 1000; k++)
li.insert(i++, 1); // No problem

li.erase(i);
i ++;
*i =2; /] Oops! It's invalid

Y I~

When the link that the iterator i was pointing to was erased, it was unlinked from the list and
thus became invalid. Trying to move forward to the “next link” from an invalid link is poorly-

Chapter 15: Multiple Inheritance
192

formed code. Notice that the operation that broke deque in DequeCoreDump.cpp is
perfectly fine with alist.

Performance comparison

To get abetter fed for the differences between the sequence containers, it’silluminating to
race them against each other while performing various operations.

/1: CO04: SequencePer f or mance. cpp

/1 Conparing the performance of the basic
/'l sequence containers for various operations
#i ncl ude <vector>

#i ncl ude <queue>

#incl ude <list>

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <typei nfo>

#i ncl ude <cti nme>

#i ncl ude <cstdlib>

usi ng namespace std;

cl ass Fi xedSi ze {
int x[20];
/1 Automatic generation of default constructor
/1 copy-constructor and operator=

} fs;

t enpl at e<cl ass Cont >
struct I|nsertBack {
voi d operator()(Cont& c, long count) {
for(long i = 0; i < count; i++)
c. push_back(fs);
}

char* testNane() { return "InsertBack"; }

};

t enpl at e<cl ass Cont >
struct InsertFront {
voi d operator()(Cont& c, long count) {
long cnt = count * 10;
for(long i = 0; i < cnt; i++)
c.push _front(fs);

Chapter 15: Multiple Inheritance
193

}

char* testNane() { return "InsertFront"; }

};

t enpl at e<cl ass Cont >
struct InsertMddle {
voi d operator()(Cont& c, long count) {
typenane Cont::iterator it;
long cnt = count / 10;
for(long i =0; i <ecnt; i++) {
/1 Must get the iterator every tine to keep
/1 from causing an access violation with
/1 vector. Increnent it to put it in the
/1 mddle of the container:
it = c.begin();
it++;
c.insert(it, fs);
}
}
char* testName() { return "InsertMddle"; }
b

t enpl at e<cl ass Cont >
struct RandomAccess { // Not for |ist
voi d operator()(Cont& c, long count) {

int sz = c.size();

long cnt = count * 100;

for(long i = 0; i < cnt; i++)

c[rand() % sz];

}
char* testName() { return "RandomAccess"; }

};

t enpl at e<cl ass Cont >
struct Traversal {
voi d operator()(Cont& c, long count) {
long cnt = count / 100;
for(long i =0; i <ecnt; i++) {
typenane Cont::iterator it = c.begin(),
end = c.end();
while(it = end) it++;
}

}

Chapter 15: Multiple Inheritance
194

char* testNane() { return "Traversal"; }

};

t enpl at e<cl ass Cont >
struct Swap {
voi d operator()(Cont& c, long count) {
int mddle = c.size() / 2
typenane Cont::iterator it = c.begin(),
md = c.begin();

it++; // Put it in the mddle
for(int x = 0; x <mddle + 1; x++)

m d++;
long cnt = count * 10;
for(long i = 0; i < cnt; i++)

swap(*it, *md);
}

char* testNane() { return "Swap"; }

};

t enpl at e<cl ass Cont >
struct RenpveM ddl e {
voi d operator()(Cont& c, long count) {
long cnt = count / 10;
if(cnt > c.size()) {

<< endl;
return;
}
for(long i =0; i <ecnt; i++) {
typenane Cont::iterator it = c.begin();
it++;
c.erase(it);
}
}
char* testName() { return "RenoveM ddl e"; }

};

t enpl at e<cl ass Cont >
struct RenobveBack {
voi d operator()(Cont& c, long count) {
long cnt = count * 10;
if(cnt > c.size()) {
cout << "RenpveBack: not enough el enents

cout << "RermpoveM ddl e: not enough el ements"

Chapter 15: Multiple Inheritance
195

<< endl;
return;
}
for(long i = 0; i <cnt; i++)
c. pop_back();
}

char* testNane() { return "RenmoveBack"; }

};

tenpl at e<cl ass p, class Contai ner>

void neasureTime(Qp f, Container& c, |ong count){
string id(typeid(f).name());
bool Deque = id.find("deque") != string::npos;

bool List = id.find("list") !'= string::npos;

bool Vector = id.find("vector") !=string::npos;

string cont = Deque ? "deque" : List ? "list"
Vector? "vector" : "unknown";

cout << f.testNanme() << " for << cont <<
/1 Standard C library CPU ticks:

clock t ticks = clock();

f(c, count); // Run the test

ticks = clock() - ticks;

cout << ticks << endl

}

t ypedef deque<Fi xedSi ze> DF
typedef |ist<FixedSi ze> LF
t ypedef vector<Fi xedSi ze> VF;

int main(int argc, char* argv[]) {
srand(tinme(0));
| ong count = 1000;
if(argc >= 2) count = atoi(argv[1]);
DF deq;
LF | st;
VF vec, vecres;
vecres.reserve(count); // Preallocate storage
nmeasur eTi me(| nsert Back<VF>(), vec, count);
nmeasur eTi me(| nsert Back<VF>(), vecres, count);
nmeasur eTi me(| nsert Back<DF>(), deq, count);
nmeasur eTi me(| nsert Back<LF>(), |st, count);
/1 Can't push _front() with a vector

/1" measureTi me(lnsertFront<VF>(), vec, count);

Chapter 15: Multiple Inheritance
196

nmeasur eTi me(| nsert Front<DF>(), deq, count);
nmeasur eTi me(l nsert Front<LF>(), |st, count);
nmeasur eTi me(| nsert M ddl e<VF>(), vec, count);
nmeasur eTi me(| nsert M ddl e<DF>(), deq, count);
nmeasur eTi me(| nsert M ddl e<LF>(), |st, count);
nmeasur eTi me(RandomAccess<VF>(), vec, count);
nmeasur eTi me(RandomAccess<DF>(), deq, count);
/1 Can't operator[] with a list:

/1" measureTi ne(RandomAccess<LF>(), |st, count);
nmeasur eTi me(Traver sal <VF>(), vec, count);
nmeasur eTi me(Traver sal <DF>(), deq, count);
nmeasur eTi me(Traversal <LF>(), |st, count);
nmeasur eTi me(Swap<VF>(), vec, count);
nmeasur eTi me(Swap<DF>(), deq, count);
nmeasur eTi me(Swap<LF>(), |st, count);
neasur eTi me(RenoveM ddl e<VF>(), vec, count);
nmeasur eTi me(RenoveM ddl e<DF>(), deq, count);
nmeasur eTi me(RenoveM ddl e<LF>(), |st, count);
vec. resize(vec.size() * 10); // Make it bigger
neasur eTi me(RenoveBack<VF>(), vec, count);
neasur eTi me(RenoveBack<DF>(), deq, count);
nmeasur eTi me(RenoveBack<LF>(), |st, count);

Y I~

This example makes heavy use of templates to eliminate redundancy, save space, guarantee
identical code and improve clarity. Each test is represented by a class that istemplatized on
the container it will operate on. The test itself isinside the operator () which, in each case,
takes a reference to the container and a repeat count — this count is not always used exactly as
itis, but sometimesincreased or decreased to prevent the test from being too short or too long.
The repeat count isjust afactor, and all tests are compared using the same value.

Each test class also has a member function that returnsits name, so that it can easily be
printed. Y ou might think that this should be accomplished using run-time type identification,
but since the actual name of the class involves a template expansion, this turns out to be the
more direct approach.

The measureTime() function template takes as its first template argument the operation that
it's going to test —which isitself a class template selected from the group defined previously
in thelisting. The template argument Op will not only contain the name of the class, but also
(decorated into it) the type of the container it's working with. The RTTI typeid() operation
allows the name of the class to be extracted as a char*, which can then be used to create a
string called id. This string can be searched using string::find() to look for deque, list or
vector. The bool variable that corresponds to the matching string becomestrue, and thisis
used to properly initialize the string cont so the container name can be accurately printed,
along with the test name.

Chapter 15: Multiple Inheritance
197

Once the type of test and the container being tested has been printed out, the actual test is
quite simple. The Standard C library function clock() is used to capture the starting and
ending CPU ticks (thisis typically more fine-grained than trying to measure seconds). Since f
is an object of type Op, which isa class that has an operator (), theline:

| f(c, count);:
is actually calling the operator () for the object f.

In main(), you can see that each different type of test is run on each type of container, except
for the containers that don’t support the particular operation being tested (these are
commented out).

When you run the program, you'll get comparative performance numbers for your particular
compiler and your particular operating system and platform. Although thisis only intended to
give you afeel for the various performance features relative to the other sequences, it isnot a
bad way to get a quick-and-dirty idea of the behavior of your library, and also to compare one
library with another.

Set

The set produces a container that will accept only one of each thing you place in it; it also
sorts the elements (sorting isn't intrinsic to the conceptual definition of a set, but the STL set
storesits elementsin a balanced binary tree to provide rapid lookups, thus producing sorted
results when you traverseit). The first two examples in this chapter used sets.

Consider the problem of creating an index for a book. Y ou might like to start with all the
words in the book, but you only want one instance of each word and you want them sorted. Of
course, a set is perfect for this, and solves the problem effortlessly. However, there’ s also the
problem of punctuation and any other non-al pha characters, which must be stripped off to
generate proper words. One solution to this problem is to use the Standard C library function
strtok(), which produces tokens (in our case, words) given a set of delimitersto strip out:

/1: CO4:WbrdLi st.cpp

/1 Display a list of words used in a docunent
#include "../require. h"

#i ncl ude <string>

#i ncl ude <cstring>

#i ncl ude <set >

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

const char* delimters =
ANt OV S {[] - =& # TN

Chapter 15: Multiple Inheritance
198

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
set<string> wordlist;
string |ine;
whil e(getline(in, line)) {
/1 Capture individual words:
char* s = // Cast probably won’t crash:
strtok((char*)line.c_str(), delimters);
whil e(s) {
/1 Automatic type conversion
wordlist.insert(s);
s = strtok(0, delimters);
}

}
/1 Qutput results:

copy(wordlist.begin(), wordlist.end(),
ostream.iterator<string>(cout, "\n"));
Y I~

strtok() takes the starting address of a character buffer (the first argument) and looks for
delimiters (the second argument). It replaces the delimiter with a zero, and returns the address
of the beginning of the token. If you call it subsequent times with a first argument of zero it
will continue extracting tokens from the rest of the string until it finds the end. In this case,
the delimiters are those that delimit the keywords and identifiers of C++, so it extracts these
keywords and identifiers. Each word is turned into a string and placed into the wor dlist
vector, which eventually contains the whole file, broken up into words.

You don’t have to use a set just to get a sorted sequence. Y ou can use the sort() function
(along with a multitude of other functionsin the STL) on different STL containers. However,
it'slikely that set will be faster.

Eliminating strtok()

Some programmers consider strtok() to be the poorest design in the Standard C library
because it uses a static buffer to hold its data between function calls. This means:

1 You can't use strtok() in two places at the same time

2. You can't use strtok() in a multithreaded program

3. You can't use strtok() in alibrary that might be used in a multithreaded
program

4 strtok() modifies the input sequence, which can produce unexpected side
effects

Chapter 15: Multiple Inheritance
199

5. strtok() dependsonreadingin “lines’, which means you need a buffer big
enough for the longest line. This produces both wastefully-sized buffers,
and lines longer than the “longest” line. This can also introduce security
holes. (Notice that the buffer size problem was eliminated in WordList.cpp
by using string input, but this required a cast so that strtok() could modify
the data in the string — a dangerous approach for general-purpose
programming).

For all these reasons it seems like agood ideato find an aternative for strtok(). The
following example will use anistreambuf_iterator (introduced earlier) to move the
characters from one place (which happens to be an istream) to another (which happensto be
astring), depending on whether the Standard C library function isalpha() is true:

[1: CO4:WbrdLi st2. cpp

/1 Elimnating strtok() fromWbrdlist.cpp
#include "../require. h"

#i ncl ude <string>

#i ncl ude <cstring>

#i ncl ude <set>

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#include <iterator>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
i streanbuf iterator<char> p(in), end;
set<string> wordlist;
while (p !'= end) {
string word;
insert _iterator<string>
ii(word, word.begin());
/1 Find the first al pha character
whil e(!isal pha(*p) & p != end)
pt+,
/1 Copy until the first non-al pha character
whil e (isal pha(*p) & p != end)
*ii++ = *p++y
if (word.size() !'= 0)
wordlist.insert(word);
}

/1 Qutput results:
copy(wordlist.begin(), wordlist.end(),

Chapter 15: Multiple Inheritance
200

ostream.iterator<string>(cout, "\n"));
Y I~

This example was suggested by Nathan Myers, who invented the istreambuf_iterator and its
relatives. Thisiterator extracts information character-by-character from a stream. Although
theistreambuf_iterator template argument might suggest to you that you could extract, for
example, intsinstead of char, that's not the case. The argument must be of some character
type—aregular char or awide character.

After thefileis open, anistreambuf_iterator called p is attached to the istream so characters
can be extracted from it. The set<string> called wordlist will be used to hold the resulting
words.

The while loop reads words until the end of the input streamis found. Thisis detected using
the default constructor for istreambuf_iterator which produces the past-the-end iterator
object end. Thus, if you want to test to make sure you're not at the end of the stream, you
simply say p !=end.

The second type of iterator that’'s used hereistheinsert_iterator, which creates an iterator
that knows how to insert objects into a container. Here, the “container” isthe string called
word which, for the purposes of insert_iterator, behaves like a container. The constructor for
insert_iterator requires the container and an iterator indicating where it should start inserting
the characters. You could also use aback_insert_iterator, which requires that the container
have a push_back() (string does).

After the while loop sets everything up, it begins by looking for the first alpha character,
incrementing start until that character is found. Then it copies characters from one iterator to
the other, stopping when a non-alpha character is found. Each word, assuming it is non-
empty, is added to wordlist.

StreamTokenizer:
amore flexible solution

The above program parses its input into strings of words containing only al pha characters, but
that’s still a special case compared to the generality of strtok(). What we'd like now isan
actual replacement for strtok() so we're never tempted to use it. WordList2.cpp can be
modified to create a class called StreamT okenizer that delivers anew token asastring
whenever you call next(), according to the delimiters you give it upon construction (very
similar to strtok()):

/1. CO04: Streamlokeni zer. h

/1l C++ Repl acement for Standard C strtok()
#i f ndef STREAMIOKENI ZER H

#def i ne STREAMIOKENI ZER H

#i ncl ude <string>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
201

#i ncl ude <iterator>

cl ass Streamlokeni zer {
typedef std::istreanbuf iterator<char> It;
It p, end;
std::string delimters;
bool isDelimter(char c) {

return
delimters.find(c) != std::string::npos;
}
public:
St reanifokeni zer (std::istream& is,
std::string delim=" \t\n; ()\"<>:{}[]+- =& #"

" I\\~10123456789") : p(is), end(It()),
delimters(delinm {}
std::string next(); // Get next token
b
#endi f STREAMIOKENI ZER H ///]: ~

The default delimiters for the StreamT okenizer constructor extract words with only alpha
characters, as before, but now you can choose different delimiters to parse different tokens.
The implementation of next() looks similar to Wordlist2.cpp:

[]: CO4: StreanTokeni zer.cpp {G
#i ncl ude " StreaniTokeni zer. h"
usi ng nanmespace std;

string Streanfokenizer::next() {
string result;
if(p !'= end) {
insert_iterator<string>
ii(result, result.begin());
while(isDelimter(*p) & p != end)
p++;
while (lisDelimter(*p) & p != end)
*Ti++ = *p++;
}

return result;
Y I~

The first non-delimiter is found, then characters are copied until adelimiter isfound, and the
resulting string isreturned. Here's atest:

/1: CO4: Tokeni zeTest. cpp
/1{L} StreaniTokeni zer

Chapter 15: Multiple Inheritance

202

/1l Test Streamlokeni zer

#i ncl ude " Streamlokeni zer. h"
#include "../require. h"

#i ncl ude <i ostreane

#i ncl ude <fstreanp

#i ncl ude <set>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
St reanifokeni zer words(in);
set<string> wordlist;
string word;
whil e((word = words. next()).size() !'= 0)
wordlist.insert(word);
/1 Qutput results:
copy(wordlist.begin(), wordlist.end(),
ostream.iterator<string>(cout, "\n"));
Y I~

Now the tool is more reusable than before, but it’s still inflexible, because it can only work
with anistream. Thisisn't asbad asit first seems, since astring can be turned into an
istream viaan istringstream. But in the next section we'll come up with the most general,
reusabl e tokenizing tool, and this should give you afeeling of what “reusable” really means,
and the effort necessary to create truly reusable code.

A completely reusable tokenizer

Since the STL containers and algorithms all revolve around iterators, the most flexible
solution will itself be an iterator. Y ou could think of the Tokenlterator as an iterator that
wraps itself around any other iterator that can produce characters. Because it is designed as an
input iterator (the most primitive type of iterator) it can be used with any STL algorithm. Not
only isit auseful tool initself, the Tokenlterator is also agood example of how you can

design your own iterators.18

The Tokenlterator isdoubly flexible: first, you can choose the type of iterator that will
produce the char input. Second, instead of just saying what characters represent the
delimiters, Tokenlterator will use a predicate which is a function object whose oper ator ()
takes a char and decidesif it should be in the token or not. Although the two examples given

18 Thisis another example coached by Nathan Myers.

Chapter 15: Multiple Inheritance
203

here have a static concept of what characters belong in atoken, you could easily design your
own function object to change its state as the characters are read, producing a more
sophisticated parser.

The following header file contains the two basic predicates | salpha and Delimiters, along
with the template for Tokenlterator:

[1: CO4: Tokenlterator.h
#i f ndef TOKENI TERATOR_H
#defi ne TOKENI TERATOR H
#i ncl ude <string>

#i nclude <iterator>

#i ncl ude <al gorithne

#i ncl ude <cctype>

struct |sal pha {
bool operator()(char c) {
usi ng nanespace std; //[[For a conpiler bug]]
return isal pha(c);
}
i

class Delimters {
std::string exclude;
public:
Delimters() {}
Delimters(const std::string& excl)
excl ude(excl) {}
bool operator()(char c) {
return exclude.find(c) == std::string::npos;
}
i

tenmplate <class Inputlter, class Pred = Isal pha>
cl ass Tokenlterator: public std::iterator<
std::input_iterator_tag,std::string,ptrdiff_t>{
Inputlter first;
Inputlter |ast;
std::string word;
Pred predicate;
public:
Tokenlterator (I nputlter begin, Inputlter end,
Pred pred = Pred())
first(begin), last(end), predicate(pred) {

Chapter 15: Multiple Inheritance
204

++*t hi s;
}
Tokenlterator() {} // End sentine
/1 Prefix increment:
Tokenl terat or & operator++() {
wor d. resi ze(0);
first = std::find_if(first, last, predicate);
while (first != last & predicate(*first))
word += *first++;
return *this;
}
/1 Postfix increnent
class Proxy {
std::string word;
public:
Proxy(const std::string& w : word(w) {}
std::string operator*() { return word; }
b
Proxy operator++(int) {
Proxy d(word);
++*t hi s;
return d;
}
/1 Produce the actual val ue:
std::string operator*() const { return word; }
std::string* operator->() const {
return & operator*());
}

/1 Conpare iterators:
bool operator==(const Tokenlterator&) {

return word.size() == 0 & first == | ast;
}
bool operator!=(const Tokenlterator& rv) {
return ! (*this == rv);
}

b
#endi f // TOKENI TERATOR H ///: ~

Tokenlterator isinherited from the std::iterator template. It might appear that there's some
kind of functionality that comes with std::iterator, but it is purely away of tagging an
iterator so that a container that uses it knows what it's capable of. Here, you can see
input_iterator_tag as atemplate argument — this tells anyone who asks that a Tokenlterator
only has the capabilities of an input iterator, and cannot be used with algorithms requiring

Chapter 15: Multiple Inheritance
205

more sophisticated iterators. Apart from the tagging, std::iterator doesn’'t do anything else,
which means you must design all the other functionality in yourself.

Tokenlterator may look alittle strange at first, because the first constructor requires both a
“begin” and “end” iterator as arguments, along with the predicate. Remember that thisisa
“wrapper” iterator that has no idea of how to tell whether it's at the end of itsinput source, so
the ending iterator is necessary in the first constructor. The reason for the second (default)
constructor is that the STL algorithms (and any agorithms you write) need a Tokenl ter ator
sentinel to be the past-the-end value. Since all the information necessary to seeif the
Tokenlterator hasreached the end of itsinput is collected in the first constructor, this second
constructor creates a Tokenlterator that is merely used as a placeholder in algorithms.

The core of the behavior happensin operator ++. This erases the current value of word using
string::resize(), then finds the first character that satisfies the predicate (thus discovering the
beginning of the new token) using find_if() (from the STL algorithms, discussed in the
following chapter). The resulting iterator is assigned to fir st, thus moving fir st forward to the
beginning of the token. Then, aslong as the end of the input is not reached and the predicate
is satisfied, characters are copied into the word from the input. Finally, the Tokenlterator
object isreturned, and must be dereferenced to access the new token.

The postfix increment requires a proxy object to hold the value before the increment, so it can
be returned (see the operator overloading chapter for more details of this). Producing the
actual valueis a straightforward operator*. The only other functions that must be defined for
an output iterator are the oper ator== and oper ator ! = to indicate whether the Tokenlterator
has reached the end of itsinput. Y ou can see that the argument for oper ator==isignored — it
only cares about whether it has reached itsinternal last iterator. Notice that operator!=is
defined in terms of operator==.

A good test of Tokenlterator includes a number of different sources of input characters
including a streambuf _iterator, achar*, and adeque<char >::iterator. Finaly, the origina
Wordlist.cpp problemis solved:

[1: CO4: TokenlteratorTest.cpp
#i ncl ude "Tokenlterator.h"
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <set>

usi ng nanmespace std;

int main() {
i fstreamin("TokenlteratorTest.cpp");
assure(in, "TokenlteratorTest.cpp");
ostream.iterator<string> out(cout, "\n");
t ypedef istreanbuf _iterator<char> Isblt;

Chapter 15: Multiple Inheritance
206

I sblt begin(in), isbEnd;
Delimters
delimters(" \t\n~ ()\"<>:{}[]+-=&#. ,/\\");
Tokenlterator<lshlt, Delimters>
wordl ter(begin, isbEnd, delimters),
end;
vector<string> wordlist;
copy(wordlter, end, back inserter(wordlist));
/1 Qutput results:
copy(wordlist.begin(), wordlist.end(), out);
a0 11} A 2 = e e T I T T "
/1 Use a char array as the source:
char* cp =
"typedef std::istreanbuf iterator<char> It";
Tokenlterator<char*, Delimters>
charlter(cp, cp + strlen(cp), delimters),
end2;
vector<string> wordlist2
copy(charlter, end2, back_ inserter(wordlist2));
copy(wordlist2. begin(), wordlist2.end(), out);
a0 11} A 2 = e e T I T T "
/1 Use a deque<char> as the source:
i fstreamin2("TokenlteratorTest.cpp");
deque<char > dc;
copy(lsblt(in2), Isblt(), back inserter(dc));
Tokenl t er at or <deque<char>::iterator,Delimters>
dclter(dc. begin(), dc.end(), delinmters),
end3;
vector<string> wordlist3
copy(dclter, end3, back inserter(wordlist3));
copy(wordlist3.begin(), wordlist3.end(), out);
a0 1} A 2 = e T T T "
/1 Reproduce the Wordlist.cpp exanpl e:
i fstreamin3("TokenlteratorTest.cpp");
Tokenlterator<lshlt, Delimters>
wordlter2(lsblt(in3), isbEnd, delimters);
set<string> wordli st4;
whi l e(wordliter2 != end)
wordlist4.insert(*wordlter2++);
copy(wordlist4. begin(), wordlist4.end(), out);
Y oI~

Chapter 15: Multiple Inheritance
207

When using an istreambuf _iterator, you create one to attach to the istream object, and one
with the default constructor as the past-the-end marker. Both of these are used to create the
Tokenlterator that will actually produce the tokens; the default constructor produces the faux
Tokenlterator past-the-end sentinel (thisisjust a placeholder, and as mentioned previoudly is
actually ignored). The Tokenlterator produces stringsthat are inserted into a container
which must, naturally, be a container of string — here avector<string> isused in all cases
except the last (you could also concatenate the results onto a string). Other than that, a
Tokenlterator works like any other input iterator.

stack

The stack, along with the queue and priority_queue, are classified as adapters, which means
they are implemented using one of the basic sequence containers: vector, list or deque. This,
in my opinion, is an unfortunate case of confusing what something does with the details of its
underlying implementation — the fact that these are called “adapters’ is of primary value only
to the creator of the library. When you use them, you generally don't care that they're
adapters, but instead that they solve your problem. Admittedly there are times when it’s useful
to know that you can choose an alternate implementation or build an adapter from an existing
container object, but that’s generally one level removed from the adapter’s behavior. So,
while you may see it emphasized elsewhere that a particular container is an adapter, | shall
only point out that fact when it’s useful. Note that each type of adapter has a default container
that it’s built upon, and this default is the most sensible implementation, so in most cases you
won't need to concern yourself with the underlying implementation.

The following example shows stack<string> implemented in the three possible ways: the
default (which uses deque), with avector and with alist:

/1: CO4: Stackl. cpp

// Denonstrates the STL stack
#include "../require. h"

#i ncl ude <i ostreanr

#i ncl ude <fstreanp

#i ncl ude <stack>

#include <list>

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

/1 Default: deque<string>:

t ypedef stack<string> Stackl;

/1 Use a vector<string>:

typedef stack<string, vector<string> > Stack2;
/1 Use a list<string>:

typedef stack<string, list<string> > Stacks3;

Chapter 15: Multiple Inheritance
208

int main(int argc, char* argv[]) {

requireArgs(argc, 1); // File nanme is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
Stackl textlines; // Try the different versions
/!l Read file and store lines in the stack
string |ine;
whil e(getline(in, line))

textlines.push(line + "\n");
/1 Print lines fromthe stack and pop them
while(!textlines.empty()) {

cout << textlines.top();

textlines. pop();

}
Y 11~

Thetop() and pop() operationswill probably seem non-intuitive if you've used other stack
classes. When you call pop() it returns void rather than the top element that you might have
expected. If you want the top element, you get areference to it with top(). It turns out thisis
more efficient, since atraditional pop() would have to return a value rather than areference,
and thus invoke the copy-constructor. When you're using astack (or apriority_queue,
described later) you can efficiently refer to top() as many times as you want, then discard the
top element explicitly using pop() (perhapsif some other term than the familiar “pop” had
been used, this would have been a bit clearer).

The stack template has a very simple interface, essentially the member functions you see
above. It doesn't have sophisticated forms of initialization or access, but if you need that you
can use the underlying container that the stack isimplemented upon. For example, suppose
you have afunction that expects a stack interface but in the rest of your program you need the
objects stored in alist. The following program stores each line of afile along with the leading
number of spacesin that line (you might imagine it as a starting point for performing some
kinds of source-code reformatting):

[1: CO4: Stack2. cpp

/1 Converting a list to a stack
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanpr

#i ncl ude <stack>

#i nclude <list>

#i ncl ude <string>

usi ng nanmespace std;

/1 Expects a stack:

Chapter 15: Multiple Inheritance
209

t enpl at e<cl ass St k>
void stackQut(Stk& s, ostream& os = cout) {
while(!s.empty()) {
0s << s.top() << "\n";
s. pop();
}
}

class Line {
string line; // Wthout |eading spaces
int |spaces; // Nunber of |eading spaces

public:
Line(string s) : line(s) {
| spaces = line.find first_not _of (' ");
i f(l spaces == string::npos)
| spaces = O0;
line = line.substr(lspaces);
}

friend ostreamk
operat or<<(ostream& os, const Line& |I) {

for(int i =0; i < |.l|lspaces; i++)
0s << ' ',
return os << |.line;
}
// O her functions here..

}s

int main(int argc, char* argv[]) {
requireArgs(argc, 1); // File nanme is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
i st<Line> |ines;
/!l Read file and store lines in the list:
string s;
whil e(getline(in, s))

i nes. push_front(s);

/1 Turn the list into a stack for printing:
stack<Li ne, list<Line> > stk(lines);
stackQut (stk);

Y oI~

The function that requires the stack interface just sends each top() object to an ostream and
then removes it by calling pop(). The Line class determines the number of leading spaces,
then stores the contents of the line without the leading spaces. The ostr eam oper ator << re-

Chapter 15: Multiple Inheritance
210

inserts the leading spaces so the line prints properly, but you can easily change the number of
spaces by changing the value of Ispaces (the member functionsto do this are not shown here).

Inmain(), the input fileisread into alist<Line>, then a stack iswrapped around thislist so
it can be sent to stackOut().

Y ou cannot iterate through a stack; this emphasizes that you only want to perform stack
operations when you creste a stack. Y ou can get equivalent “stack” functionality using a
vector and its back(), push_back(') and pop_back() methods, and then you have al the
additional functionality of the vector. Stack1.cpp can be rewritten to show this:

/1: CO4: Stack3. cpp

/1 Using a vector as a stack; nodified Stackl.cpp
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> textlines;
string line;
whil e(getline(in, line))
textlines. push_back(line + "\n");
while(!textlines.empty()) {
cout << textlines. back();
textlines. pop_back();

}
Y 110~

You'll seethis produces the same output as Stack 1.cpp, but you can now perform vector
operations as well. Of course, list has the additional ability to push things at the front, but it's
generally less efficient than using push_back() with vector. (In addition, deque is usually
more efficient than list for pushing things at the front).

queue

The queue isarestricted form of a deque —you can only enter elements at one end, and pull
them off the other end. Functionally, you could use a deque anywhere you need a queue, and
you would then also have the additional functionality of the deque. The only reason you need

Chapter 15: Multiple Inheritance
211

to use a queue rather than a deque, then, isif you want to emphasize that you will only be
performing queue-like behavior.

The queue is an adapter class like stack, in that it is built on top of another sequence
container. As you might guess, the ideal implementation for aqueue isadeque, and that is
the default template argument for the queue; you'll rarely need a different implementation.

Queues are often used when modeling systems where some elements of the system are
waiting to be served by other elementsin the system. A classic example of thisisthe “bank-
teller problem,” where you have customers arriving at random intervals, getting into aline,
and then being served by a set of tellers. Since the customers arrive randomly and each take a
random amount of time to be served, there’'s no way to deterministically know how long the
line will be at any time. However, it's possible to simulate the situation and see what happens.

A problem in performing this simulation is the fact that, in effect, each customer and teller
should be run by a separate process. What we' d like is a multithreaded environment, then
each customer or teller would have their own thread. However, Standard C++ has no model
for multithreading so there is no standard solution to this problem. On the other hand, with a
little adjustment to the code it’s possible to simulate enough multithreading to provide a
satisfactory solution to our problem.

Multithreading means you have multiple threads of control running at once, in the same
address space (this differs from multitasking, where you have different processes each running
in their own address space). Thetrick isthat you have fewer CPUs than you do threads (and
very often only one CPU) so to give theillusion that each thread has its own CPU thereisa
time-slicing mechanism that says “ OK, current thread — you’ ve had enough time. I’'m going to
stop you and go give time to some other thread.” This automatic stopping and starting of
threadsis called pre-emptive and it means you don’'t need to manage the threading process at
all.

An alternative approach is for each thread to voluntarily yield the CPU to the scheduler,
which then goes and finds another thread that needs running. This is easier to synthesize, but
it still requires a method of “swapping” out one thread and swapping in another (this usually
involves saving the stack frame and using the standard C library functions setjmp() and
longjmp(); see my articlein the (XX) issue of Computer Language magazine for an
example). So instead, we'll build the time-dlicing into the classes in the system. In this case, it
will be thetellers that represent the “threads,” (the customers will be passive) so each teller
will have an infinite-looping run() method that will execute for a certain number of “time
units,” and then simply return. By using the ordinary return mechanism, we eliminate the need
for any swapping. The resulting program, although small, provides a remarkably reasonable
simulation:

/1: CO4:BankTel l er.cpp

/1 Using a queue and sinmulated nultithreading
/1 To nodel a bank teller system

#i ncl ude <i ostreanp

#i ncl ude <queue>

Chapter 15: Multiple Inheritance
212

#i ncl ude <list>

#i ncl ude <cstdlib>
#i ncl ude <cti nme>
usi ng namespace std;

cl ass Customer ({
int serviceTine;
public:
Custoner () : serviceTine(0) {}
Custonmer(int tm : serviceTinme(tm {}
int getTime() { return serviceTine; }
void setTinme(int newtine) {
serviceTime = newi ne;
}
friend ostreamk
oper at or <<(ostrean& os, const Custoneré& c) {
return os << '[' << c.serviceTine << ']";
}
b

class Teller {
gueue<Cust oner >& cust oners;
Cust oner current;
static const int slice = 5;
int ttinme; // Time left in slice
bool busy; // Is teller serving a custoner?
public:
Tel | er (queue<Cust orrer >& cq)
custonmers(cq), ttime(0), busy(false) {}
Tel | er & operator=(const Teller& rv) {
customers = rv.customners;
current = rv.current;
ttime = rv.ttineg;
busy = rv. busy;
return *this;
}
bool isBusy() { return busy; }
void run(bool recursion = false) {
i f(!recursion)
ttime = slice;
int servtine = current.getTine();
if(servtime > ttime) {
servtine -= ttine;

Chapter 15: Multiple Inheritance
213

current.set Ti me(servtinme);
busy = true; // Still working on current
return;
}
if(servtime < ttime) {
ttime -= servtinmne;
i f(!custonmers.empty()) {
current = custoners.front();
custoners. pop(); // Renove it
busy = true;
run(true); // Recurse
}
return;
}
if(servtime == ttinme) {
/1 Done with current, set to enpty:
current = Custoner(0);
busy = fal se;
return; // No nmore time in this slice
}
}
b

/1 Inherit to access protected i nplenmentation
class CustomerQ : public queue<Custoner> {
public:
friend ostreamk
oper at or <<(ostream& os, const CustonmerQ& cd) {
copy(cd. c. begin(), cd.c.end(),
ostream.iterator<Custoner>(os, ""));
return os;
}
b

int main() {
Cust oner Q cust omrer s;
list<Teller> tellers;
typedef list<Teller>::iterator Telllt;
tell ers. push_back(Tell er(custoners));
srand(tinme(0)); // Seed random nunber generator
while(true) {
/1 Add a random nunber of customers to the
/1 queue, with random service tines:

Chapter 15: Multiple Inheritance
214

for(int i =0; i <rand() %5; i++)

custoners. push(Custoner(rand() %15 + 1));
cout << '{' << tellers.size() <<'}'

<< customers << endl
/1 Have the tellers service the queue:
for(Telllt i = tellers.begin();

i 1= tellers.end(); i++)

(*i).run();
cout << '{' << tellers.size() << '}’

<< customers << endl
/1 1f line is too long, add another teller
if(custonmers.size() / tellers.size() > 2)

tell ers. push_back(Tell er(custoners));
/1 1f line is short enough, renove a teller
if(tellers.size() > 1 &&

custoners.size() / tellers.size() < 2)

for(Telllt i = tellers.begin();

i 1= tellers.end(); i++)
if('(*i).isBusy()) {
tellers.erase(i);
break; // Qut of for |oop

}

}
Y 11~

Each customer requires a certain amount of service time, which is the number of time units
that ateller must spend on the customer in order to serve that customer’s needs. Of course, the
amount of service time will be different for each customer, and will be determined randomly.
In addition, you won't know how many customers will be arriving in each interval, so this

will also be determined randomly.

The Customer objects are kept in a queue<Customer >, and each Teller object keeps a
reference to that queue. When a Teller object is finished with its current Customer object,
that Teller will get another Customer from the queue and begin working on the new
Customer, reducing the Customer’s service time during each time dice that the Teller is
alotted. All thislogic isintherun() member function, which is basically athree-way if
statement based on whether the amount of time necessary to serve the customer isless than,
greater than or equal to the amount of time left in the teller’s current time slice. Notice that if
the Teller has more time after finishing with a Customer, it gets a new customer and recurses
into itself.

Just as with a stack, when you use aqueue, it's only aqueue and doesn’t have any of the
other functionality of the basic sequence containers. Thisincludes the ability to get an iterator
in order to step through the stack. However, the underlying sequence container (that the
queueis built upon) is held as a protected member inside the queue, and the identifier for

Chapter 15: Multiple Inheritance
215

this member is specified in the C++ Standard as ‘¢’, which means that you can inherit from
queue in order to access the underlying implementation. The Customer Q class does exactly
that, for the sole purpose of defining an ostream oper ator << that can iterate through the
queue and print out its members.

The driver for the simulation is the infinite while loop in main(). At the beginning of each
pass through the loop, a random number of customers are added, with random service times.
Both the number of tellers and the queue contents are displayed so you can see the state of the
system. After running each teller, the display is repeated. At this point, the system adapts by
comparing the number of customers and the number of tellers; if the line istoo long another
teller isadded and if it is short enough ateller can be removed. It isin this adaptation section
of the program that you can experiment with policies regarding the optimal addition and
removal of tellers. If thisisthe only section that you' re modifying, you may want to
encapsulate policies inside of different objects.

Priority queues

When you push() an object onto apriority_queue, that object is sorted into the queue
according to afunction or function object (you can allow the default |ess template to supply
this, or provide one of your own). The priority_queue ensures that when you look at the

top() element it will be the one with the highest priority. When you' re done with it, you call
pop() to remove it and bring the next one into place. Thus, the priority_queue has nearly the
same interface as a stack, but it behaves differently.

Like stack and queue, priority_gqueueis an adapter which is built on top of one of the basic
sequences — the default is vector .

It'strivial to make apriority_queue that works with ints:

[1: CO4:PriorityQueuel. cpp
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti me>

usi ng nanmespace std;

int main() {
priority_queue<int> pqi
srand(time(0)); // Seed random number generat or
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
whi le(!pqi.enpty()) {
cout << pqgi.top() <<'
} pai . pop();

Chapter 15: Multiple Inheritance
216

| Y oI~

This pushes into the priority_queue 100 random values from O to 24. When you run this
program you'll see that duplicates are allowed, and the highest values appear first. To show
how you can change the ordering by providing your own function or function object, the
following program gives lower-valued numbers the highest priority:

[]: CO4:PriorityQueue2. cpp
/1 Changing the priority
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

usi ng nanmespace std;

struct Reverse {
bool operator()(int x, int y) {
returny < x;
}

b

int main() {
priority_queue<int, vector<int> Reverse> pqi
/1 Could al so say:
/] priority_queue<int, vector<int>,
/1 greater<int> > pqi;
srand(tinme(0));
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
whi le(!pqi.enpty()) {
cout << pgi.top() << ' ',
pgi . pop() ;
}
Y I~

Although you can easily use the Standard Library greater template to produce the predicate, |
went to the trouble of creating Rever se so you could see how to do it in case you have a more
complex scheme for ordering your objects.

If you look at the description for priority_queue, you see that the constructor can be handed a
“Compare” object, as shown above. If you don’t use your own “Compare” object, the default
template behavior is the less template function. Y ou might think (as | did) that it would make
sense to leave the template instantiation as priority_queue<int>, thus using the default
template arguments of vector <int> and less<int>. Then you could inherit a new class from
less<int>, redefine operator () and hand an object of that type to the priority_queue

Chapter 15: Multiple Inheritance
217

constructor. | tried this, and got it to compile, but the resulting program produced the same old
less<int> behavior. The answer liesin the less< > template:

tenpl ate <class T>
struct less : binary function<T, T, bool > {
/1 Other stuff...
bool operator()(const T& x, const T& y) const {
return x <vy;
}

}s

The operator (') isnot virtual, so even though the constructor takes your subclass of
less<int> by reference (thus it doesn’t slice it down to a plain less<int>), when operator () is
called, it is the base-class version that is used. Whileit is generally reasonable to expect
ordinary classes to behave polymorphically, you cannot make this assumption when using the
STL.

Of course, apriority_queue of int istrivial. A more interesting problem isato-do list, where
each object contains a string and a primary and secondary priority value:

[1: CO4:PriorityQueue3. cpp

/1 A nore conplex use of priority queue
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <string>

usi ng namespace std;

cl ass ToDoltem {
char primary;
i nt secondary;
string item
public:
ToDoltem(string td, char pri = A, int sec =1)
item(td), primary(pri), secondary(sec) {}
friend bool operator<(
const ToDoltem& x, const ToDoltem& y) {
if(x.primary > y.prinmary)
return true;
if(x.primary == y.prinary)
i f(x.secondary > y.secondary)
return true;
return false;
}
friend ostreamk
oper at or<<(ostream& os, const ToDoltem& td) {

Chapter 15: Multiple Inheritance
218

return os << td.primary << td.secondary
<< ": " << td.item
}
b

int main() {
priority queue<ToDoltemnm> toDoli st;

t oDoLi st. push(ToDol tem("Enpty trash", 'C, 4));
t oDoLi st. push(ToDol tem(" Feed dog", 'A, 2));

t oDoLi st. push(ToDol tem("Feed bird", "B, 7));

t oDoLi st. push(ToDol tem("Mow | awn", 'C, 3));

t oDoLi st. push(ToDol tem("Water lawn", 'A, 1));
t oDoLi st. push(ToDol tem("Feed cat", 'B, 1));

whi | e(!toDoList.enmpty()) {
cout << toDoList.top() << endl;
t oDoLi st. pop();

}
Y 11~

ToDoltem’s operator < must be a non-member function for it to work with less< >. Other
than that, everything happens automatically. The output is:

Al: Water | awn
A2: Feed dog
Bl: Feed cat
B7: Feed bird
C3: Mow | awn
CA: Enpty trash

Note that you cannot iterate through apriority_queue. However, it is possible to emulate the
behavior of apriority_queue using avector, thus allowing you access to that vector. You
can do this by looking at the implementation of priority_queue, which uses make_heap(),
push_heap() and pop_heap() (they are the soul of the priority_queue; in fact you could say
that the heap isthe priority queue and priority_queueisjust awrapper around it). Thisturns
out to be reasonably straightforward, but you might think that a shortcut is possible. Since the
container used by priority_queueis protected (and has the identifier, according to the
Standard C++ specification, named c¢) you can inherit a new class which provides access to
the underlying implementation:

[1: CO4:PriorityQueue4d. cpp
/1 Mani pul ating the underlying inplementation

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<i ostreane
<queue>
<cstdli b>
<cti ne>

Chapter 15: Multiple Inheritance

219

usi ng namespace std;

class PQ : public priority_queue<int> {
public:
vector<int>& inmpl () { return c; }

b
int main() {
PQ pqi;
srand(time(0));
for(int i = 0; i < 100; i++)

pqi . push(rand() % 25);
copy(pqi.inpl().begin(), pqgi.inpl().end(),
ostream.iterator<int>(cout, " "));
cout << endl;
whi le(!pai.emty()) {
cout << pqgi.top() << ' ';

pgi . pop();

Y 11~

However, if you run this program you'll discover that the vector doesn’t contain the itemsin
the descending order that you get when you call pop(), the order that you want from the
priority queue. It would seem that if you want to create a vector that isa priority queue, you
have to do it by hand, like this:

[1: CO4:PriorityQueueb. cpp

/1 Building your own priority queue
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

usi ng nanmespace std;

templ at e<cl ass T, class Compare>
class PQV : public vector<T> {
Conpar e conp;
public:
PQV(Compare cnp = Conpare()) : conp(cnmp) {
make heap(begin(), end(), conp);
}
const T& top() { return front(); }
voi d push(const T& x) {
push_back(x);

Chapter 15: Multiple Inheritance
220

push_heap(begin(), end(), conp);
}
voi d pop() {
pop_heap(begi n(), end(), conp);
pop_back();
}
}s

int main() {
PQV<int, |ess<int> > pqi
srand(time(0));
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
copy(pai . begin(), pagi.end(),
ostreamiterator<int>(cout, " "));
cout << endl
whi le(!pai.emty()) {
cout << pgi.top() << ' ';
pdi . pop();
}
Y oI~

But this program behaves in the same way as the previous one! What you are seeing in the
underlying vector is called aheap. This heap represents the tree of the priority queue (stored
in the linear structure of the vector), but when you iterate through it you do not get a linear
priority-queue order. Y ou might think that you can simply call sort_heap(), but that only
works once, and then you don’t have a heap anymore, but instead a sorted list. This means
that to go back to using it as a heap the user must remember to call make_heap() first. This
can be encapsulated into your custom priority queue:

/1: CO4:PriorityQueueb. cpp
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti me>

usi ng nanmespace std;

tenpl at e<cl ass T, class Compare>
class PQV : public vector<T> {
Conpar e conp;
bool sorted;
voi d assureHeap() {
if(sorted) {

Chapter 15: Multiple Inheritance
221

/1 Turn it back into a heap
make heap(begin(), end(), conp);
sorted = fal se
}
}
public:

PQV(Conpare cnp = Conpare()) : conp(cnmp) {
make heap(begin(), end(), conp);
sorted = fal se

}

const T& top() {
assur eHeap() ;
return front();

}

voi d push(const T& x) {
assur eHeap() ;

/1l Put it at the end:
push_back(x);

/1 Re-adjust the heap
push_heap(begin(), end(), conp);

}
voi d pop() {
assur eHeap() ;
/1 Move the top elenment to the |ast position
pop_heap(begi n(), end(), conp);
/1 Renpve that elenment:
pop_back() ;
}
voi d sort() {
if(!sorted) {
sort _heap(begin(), end(), conp);
reverse(begin(), end());
sorted = true;
}
}
b

int main() {
PQV<int, |ess<int> > pqi
srand(time(0));
for(int i =0; i < 100; i++) {
pgi . push(rand() % 25);
copy(pai . begin(), pai.end(),

Chapter 15: Multiple Inheritance
222

ostreamiterator<int>(cout, " "));

cout << "\n----- \n";
}
pgi . sort();
copy(pqi . begin(), pqi.end(),
ostream.iterator<int>(cout, " "));
cout << "\n----- \n";

while(!pgi.empty()) {
cout << pqgi.top() << ' ';
} pgi . pop();
Y I~

If sorted istrue, then the vector is not organized as a heap, but instead as a sorted sequence.
assureHeap() guarantees that it's put back into heap form before performing any heap

operations on it.

Thefirst for loop in main(') now has the additional quality that it displaysthe heap asit’'s

being built.

The only drawback to this solution is that the user must remember to call sort() before
viewing it as a sorted sequence (although one could conceivably override all the methods that
produce iterators so that they guarantee sorting). Another solution isto build a priority queue

that is not avector, but will build you avector whenever you want one;

/1: CO4:PriorityQueue7.cpp

/1 A priority queue that will hand you a vector
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

tenpl at e<cl ass T, class Compare>
class PQV {
vector<T> v;
Conpar e conp;
public:
/1 Don't need to call make_heap(); it's enpty:
PQV(Conpare cnp = Conpare()) : conp(cnmp) {}
voi d push(const T& x) {
/1 Put it at the end:
v. push_back(x);
/1 Re-adjust the heap:

Chapter 15: Multiple Inheritance
223

push_heap(v. begin(), v.end(), conp);
}
voi d pop() {
/1 Move the top elenment to the |ast position
pop_heap(v. begin(), v.end(), conp);
/1 Renove that element:
V. pop_back();
}
const T& top() { return v.front(); }
bool enpty() const { return v.enpty(); }
int size() const { return v.size(); }
t ypedef vector<T> TVec;
TVec vector() {
TVec r(v.begin(), v.end());
/1 1t’s already a heap
sort _heap(r.begin(), r.end(), conp);
/1 Put it into priority-queue order
reverse(r.begin(), r.end());
return r;

}
}s

int main() {
PQV<i nt, |ess<int> > pqi;
srand(time(0));
for(int i = 0; i < 100; i++)
pgi . push(rand() % 25);
const vector<int>& v = pgi.vector();
copy(v. begin(), v.end(),
ostream.iterator<int>(cout, " "));
cout << "\nN----------- \n":
whi I e(!pgi.empty()) {
cout << pgi.top() << ' ';
pai - pop();
}
YL~

PQV follows the same form asthe STL’s priority_queue, but has the additional member
vector (), which creates a new vector that’s a copy of the onein PQV (which meansthat it's
already a heap), then sortsit (thusit leave’'s PQV’ s vector untouched), then reverses the order
so that traversing the new vector produces the same effect as popping the elements from the
priority queue.

Chapter 15: Multiple Inheritance
224

Y ou may observe that the approach of inheriting from priority_queue used in
PriorityQueued.cpp could be used with the above technique to produce more succinct code:

/1: CO4:PriorityQueue8. cpp

/1 A nore conpact version of PriorityQueue7.cpp
#i ncl ude <i ostreane

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti me>

usi ng nanmespace std;

t enpl at e<cl ass T>
class PQV : public priority queue<T> {
public:
t ypedef vector<T> TVec;
TVec vector() {
TVec r(c.begin(), c.end());
/1 ¢ is already a heap
sort _heap(r.begin(), r.end(), conp);
/1 Put it into priority-queue order
reverse(r.begin(), r.end());
return r;
}
b

int main() {
PQV<i nt > pq| :
srand(time(0));
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
const vector<int>& v = pgi.vector();
copy(v. begin(), v.end(),
ostream.iterator<int>(cout, " "));
cout << "\nN----------- \n":
whi I e(!pgi.empty()) {
cout << pgi.top() << ' ';
pai . pop();
}
YL~

The brevity of this solution makesit the simplest and most desirable, plusit’s guaranteed that
the user will not have avector in the unsorted state. The only potentia problem isthat the

Chapter 15: Multiple Inheritance
225

vector () member function returns the vector <T > by value, which might cause some
overhead issues with complex values of the parameter type T.

Holding bits

Most of my computer education was in hardware-level design and programming, and | spent
my first few years doing embedded systems devel opment. Because C was a language that
purported to be “ close to the hardware,” | have always found it dismaying that there was no
native binary representation for numbers. Decimal, of course, and hexadecimal (tolerable only
because it’s easier to group the bitsin your mind), but octal? Ugh. Whenever you read specs
for chips you're trying to program, they don’t describe the chip registersin octal, or even
hexadecimal — they use binary. And yet C won't let you say 0b0101101, which is the obvious
solution for alanguage close to the hardware.

Although there's still no native binary representation in C++, things have improved with the
addition of two classes: bitset and vector <bool>, both of which are designed to manipulate a
group of on-off values. The primary differences between these types are;

1. Thebitset holds afixed number of bits. Y ou establish the quantity of bits in the bitset
template argument. The vector <bool> can, like aregular vector, expand dynamically to
hold any number of bool values.

2. Thebitset isexplicitly designed for performance when manipulating bits, and not asa
“regular” container. As such, it has no iterators and it's most storage-efficient when it
contains an integral number of long values. The vector <bool>, on the other hand, isa
specialization of avector, and so has all the operations of a normal vector — the
specialization isjust designed to be space-efficient for bool.

Thereisno trivial conversion between abitset and a vector <bool>, which implies that the
two are for very different purposes.

bitset<n>

The template for bitset accepts an integral template argument which is the number of bitsto
represent. Thus, bitset<10> is a different type than bitset<20>, and you cannot perform
comparisons, assignments, etc. between the two.

A bitset provides virtually any bit operation that you could ask for, in avery efficient form.
However, each bitset is made up of an integral number of longs (typically 32 bits), so even
though it uses no more space than it needs, it always uses at least the size of along. This
means you' |l use space most efficiently if you increase the size of your bitsetsin chunks of
the number of bitsin along. In addition, the only conversion from a bitset to a numerica
valueisto an unsigned long, which meansthat 32 bits (if your long isthe typical size) isthe
most flexible form of abitset.

Chapter 15: Multiple Inheritance
226

The following example tests ailmost all the functionality of the bitset (the missing operations
are redundant or trivial). You'll see the description of each of the bitset outputs to the right of
the output so that the bits all line up and you can compare them to the source values. If you
till don’t understand bitwise operations, running this program should help.

[1: CO4:BitSet.cpp

/1 Exercising the bitset class
#i ncl ude <i ostreanp

#i ncl ude <bitset>

#i ncl ude <cstdlib>

#i ncl ude <cti me>
#include <climts>

#i ncl ude <string>
usi ng nanmespace std;
const int sz = 32;
typedef bitset<sz> BS;

tenpl ate<i nt bits>
bitset<bits> randBitset () ({
bitset<bits> r(rand());

for(int i =0; i <bits/16 - 1; i++) {
r <<= 16;
/1 "OR' together with a new |lower 16 bits:
r |= bitset<bits>(rand());

}

return r;

}

int main() {
srand(tinme(0));
cout << "sjzeof (bitset<l16>) ="
<< sij zeof (bitset<16>) << endl
cout << "sjzeof (bitset<32>) ="
<< si zeof (bitset <32>) << endl
cout << "sijzeof (bitset<48>) ="
<< si zeof (bitset <48>) << endl
cout << "sijzeof (bitset<64>) ="
<< sij zeof (bitset <64>) << endl
cout << "sijzeof (bitset<65>) ="
<< sij zeof (bitset <65>) << endl
BS a(randBitset<sz>()), b(randBitset<sz>());
/1 Converting froma bitset:
unsi gned long ul = a.to_ulong();
string s = b.to_string();

Chapter 15: Multiple Inheritance
227

/1 Converting a string to a bitset:
char* chits = "111011010110111";
cout << "char* chits = " << chits <<endl;
cout << BS(chits) << " [BS(chits)]" << endl;
cout << BS(chits, 2)
<< " [BS(chits, 2)]" << endl;
cout << BS(chits, 2, 11)
<< " [BS(chits, 2, 11)]" << endl;
cout << a << " [a]" << endl;
cout << b << " [b]"<< endl;
/1 Bitw se AND:
cout << (a & b) << " [a & b]" << endl;
cout << (BS(a) & b) << " [a &= b]" << endl;
/] Bitw se OR
cout << (a | b) << " [a | b]" << endl;
cout << (BS(a) |=b) << " [a |= b]" << endl;
/1 Exclusive OR
cout << (a ™ b) << " [a ™ b]" << endl;
cout << (BS(a) "= b) << " [a ™= b]" << endl;
cout << a << " [a]" << endl; // For reference
/1 Logical left shift (fill with zeros):
cout << (BS(a) <<= sz/?2)
<< " [a <<= (sz/2)]" << endl;
cout << (a << sz/2) << endl;
cout << a << " [a]" << endl; // For reference
/1 Logical right shift (fill with zeros):
cout << (BS(a) >>= sz/?2)
<< " [a >>= (sz/2)]" << endl;
cout << (a >> sz/2) << endl;
cout << a << " [a]" << endl; // For reference
cout << BS(a).set() << " [a.set()]" << endl;
for(int i =0; i < sz; i++4)
if(la.test(i)) {
cout << BS(a).set(i)
<< " Ja.set(" << i <<")]" << endl;
break; // Just do one exanple of this
}
cout << BS(a).reset() << " [a.reset()]"<< endl;
for(int j = 0; j < sz; j++)
if(a.test(j)) {
cout << BS(a).reset(j)
<< " Ja.reset(" << j <<")]" << endl;
break; // Just do one exanple of this

Chapter 15: Multiple Inheritance
228

}
cout << BS(a).flip() << " [a.flip()]" << endl;

cout << ~a << " [~a]" << endl
cout << a << " [a]" << endl; // For reference
cout << BS(a).flip(l) << " [a.flip(l)]"<< endl;

BS c;
cout << ¢ << " [c]" << endl;
cout << "c.count() = " << c.count() << endl;
cout << "c.any() ="

<< (c.any() ? "true" : "false") << endl;
cout << "c.none() ="

<< (c.none() ? "true" : "false") << endl;

c[1].flip(); c[2].flip();
cout << ¢ << " [c]" << endl;

cout << "c.count() = " << c.count() << endl
cout << "c.any() ="

<< (c.any() ? "true" : "false") << endl
cout << "c.none() ="

<< (c.none() ? "true" : "false") << endl
/1 Array indexing operations:
c.reset();

for(int k = 0; k < c.size(); k++)
if(k %2 == 0)
clkl.flip();
cout << ¢ << " [c]" << endl;
c.reset();
/1 Assignnment to bool:
for(int ii = 0; ii < c.size(); ii++)
c[ii] = (rand() % 100) < 25;
cout << ¢ << " [c]" << endl;
/1 bool test:
if(c[1l] == true)

cout << "c¢[1] == true";
el se
cout << "c¢[1] == false" << endl;
Y I~

To generate interesting random bitsets, the randBitset() function is created. The Standard C
rand() function only generates an int, so this function demonstrates oper ator <<= by shifting
each 16 random bits to the left until the bitset (which is templatized in this function for size)
isfull. The generated number and each new 16 bits is combined using the operator |=.

The first thing demonstrated in main() isthe unit size of abitset. If it isless than 32 bits,
sizeof produces 4 (4 bytes = 32 hits), which is the size of a single long on most

Chapter 15: Multiple Inheritance
229

implementations. If it's between 32 and 64, it requires two longs, greater than 64 requires 3
longs, etc. Thus you make the best use of space if you use a bit quantity that fitsin an integral
number of longs. However, notice there’s no extra overhead for the object —it’'sasif you
were hand-coding to use along.

Another clue that bitset is optimized for longsisthat thereisato_ulong() member function
that produces the value of the bitset as an unsigned long. There are no other numerical
conversions from bitset, but thereisato_string() conversion that produces a string
containing ones and zeros, and this can be aslong as the actual bitset. However, using
bitset<32> may make your life ssimpler because of to_ulong().

There's still no primitive format for binary values, but the next best thing is supported by
bitset: astring of ones and zeros with the least-significant bit (Isb) on the right. The three
constructors demonstrated show taking the entire string (the char array is automatically
converted to astring), the string starting at character 2, and the string from character 2
through 11. Y ou can write to an ostr eam from a bitset using oper ator << and it comes out as
ones and zeros. Y ou can also read from an istream using oper ator >> (not shown here).

You'll notice that bitset only has three non-member operators: and (&), or (]) and exclusive-
or ("). Each of these create a new bitset as their return value. All of the member operators opt
for the more efficient & =, |=, etc. form where atemporary is not created. However, these
forms actually change their Ivalue (which isa in most of the tests in the above example). To
prevent this, | created atemporary to be used as the Ivalue by invoking the copy-constructor
on a; thisiswhy you see the form BS(a). The result of each test is printed out, and
occasionally ais reprinted so you can easily look at it for reference.

Therest of the example should be self-explanatory when you run it; if not you can find the
detailsin your compiler’s documentation or the other documentation mentioned earlier in this
chapter.

vector <bool>

vector <bool> is a specialization of the vector template. A normal bool variable requires at
least one byte, but since abool only has two states the ideal implementation of vector <bool>
is such that each bool value only requires one bit. This means the iterator must be specially-
defined, and cannot be abool*.

The bit-manipulation functions for vector <bool> are much more limited than those of bitset.
The only member function that was added to those aready in vector isflip(), to invert al the
bits; thereisno set() or reset() asin bitset. When you use operator|[], you get back an
object of type vector <bool>::reference, which also has aflip() to invert that individual bit.

/1: CO4: Vect or O Bool . cpp

/1 Denonstrate the vector<bool > specialization
#i ncl ude <i ostreanp

#i ncl ude <sstreanp

#i ncl ude <vector>

Chapter 15: Multiple Inheritance
230

#i ncl ude <bitset>
#i ncl ude <iterator>
usi ng namespace std;

int main() {

vect or <bool > vb(10, true);

vector<bool >::iterator it;

for(it = vb.begin(); it != vb.end(); it++)
cout << *it;

cout << endl

vb. push_back(fal se);

ostream.terator<bool > out (cout, "");

copy(vb. begin(), vb.end(), out);

cout << endl

bool ab[] = { true, false, false, true, true,
true, true, false, false, true };

/1 There's a simlar constructor

vb. assi gn(ab, ab + sizeof (ab)/sizeof (bool));

copy(vb. begin(), vb.end(), out);

cout << endl

vb.flip(); // Flip all bits

copy(vb. begin(), vb.end(), out);

cout << endl

for(int i =0; i < vb.size(); i++)
vb[i] = 0; // (Equivalent to "false")

vb[4] = true;

vb[5] = 1;

vb[7].flip(); // Invert one bit

copy(vb. begin(), vb.end(), out);

cout << endl

/1 Convert to a bitset:

ostringstream os;

copy(vb. begin(), vb.end(),
ostream.iterator<bool >(os, ""));

bi t set <10> bs(os.str());

cout << "Bitset:\n" << bs << endl

Y oI~

The last part of this example takes a vector <bool> and convertsit to a bitset by first turning it
into astring of ones and zeros. Of course, you must know the size of the bitset at compile-
time. Y ou can see that this conversion is not the kind of operation you'll want to do on a
regular basis.

Chapter 15: Multiple Inheritance
231

Assoclative contaners

The set, map, multiset and multimap are called associative containers because they
associate keys with values. Well, at least maps and multimaps associate keys to values, but
you can look at aset asamap that has no values, only keys (and they can in fact be
implemented this way), and the same for the relationship between multiset and multimap.
So, because of the structural similarity sets and multisets are lumped in with associative
containers.

The most important basic operations with associative containers are putting thingsin, and in
the case of a set, seeing if something isin the set. In the case of amap, you want to first see if
akey isinthe map, and if it exists you want the associated value for that key to be returned.
Of course, there are many variations on this theme but that’ s the fundamental concept. The
following example shows these basics:

/1: CO4: Associ ati veBasi cs. cpp

/1 Basic operations with sets and nmaps
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreane

#i ncl ude <set>

#i ncl ude <map>

usi ng nanmespace std;

int main() {
Noi sy na[] = { Noisy(), Noisy(), Noisy(),
Noi sy(), Noisy(), Noisy(), Noisy() };
/1 Add el ements via constructor
set <Noi sy> ns(na, na+ sizeof na/sizeof (Noisy));
/1 Ordinary insertion:
Noi sy n;
ns.insert(n);
cout << endl
/1 Check for set menbership
cout << "ns.count(n)=" << ns.count(n) << endl
if(ns.find(n) !'= ns.end())
cout << "n(" << n << ") found in ns" << endl
/1 Print elenents:
copy(ns. begin(), ns.end(),
ostream.iterator<Noisy>(cout, " "));
cout << endl
cout << "
map<i nt, Noi sy> nm
for(int i =0; i < 10; i++4)

Chapter 15: Multiple Inheritance
232

nnmi]; // Automatically makes pairs

cout << "\nN----------- \n":
for(int j =0; j < nmsize(); j++)

cout << "nn{" << j <<"] =" << nn{j] << end|
cout << "\nN----------- \n":
nn{10] = n;
cout << "\nN----------- \n":
nminsert(make_pair(47, n));
cout << "\nN----------- \n":

cout << "\'n nmcount(10)="
<< nm count (10) << endl;
cout << "nmcount(11)="
<< nmcount (11) << endl;
map<i nt, Noisy>::iterator it = nmfind(6);
if(it '= nmend())
cout << "value:" << (*it).second
<< " found in nmat |ocation 6" << endl;
for(it = nmbegin(); it !'= nmend(); it++)
cout << (*it).first << ":"
<< (*it).second << ", ";
cout << "
Y I~

The set<Noisy> object nsis created using two iterators into an array of Noisy objects, but
there is also a default constructor and a copy-constructor, and you can pass in an object that
provides an alternate scheme for doing comparisons. Both sets and maps have an insert()
member function to put thingsin, and there are a couple of different waysto check to seeif an
object is aready in an associative container: count(), when given akey, will tell you how
many times that key occurs (this can only be zero or one in aset or map, but it can be more
than one with amultiset or multimap). The find() member function will produce an iterator
indicating the first occurrence (with set and map, the only occurrence) of the key that you
giveit, or the past-the-end iterator if it can’t find the key. The count() and find() member
functions exist for al the associative containers, which makes sense. The associative
containers also have member functions lower_bound(), upper_bound() and

equal_range(), which actually only make sense for multiset and multimap, as you shall see
(but don't try to figure out how they would be useful for set and map, since they are designed
for dealing with arange of duplicate keys, which those containers don't allow).

Designing an oper ator|[] always produces a little bit of a dilemma because it’sintended to be
treated as an array-indexing operation, so people don’t tend to think about performing atest
before they use it. But what happensif you decide to index out of the bounds of the array?
One option, of course, isto throw an exception, but with amap “indexing out of the array”
could mean that you want an entry there, and that’ s the way the STL map treatsit. The first
for loop after the creation of the map<int, Noisy> nm just “looks up” objects using the
operator[], but thisis actually creating new Noisy objects! The map creates a new key-value

Chapter 15: Multiple Inheritance
233

pair (using the default constructor for the value) if you look up avalue with operator[] and it
isn't there. This meansthat if you really just want to look something up and not create a new
entry, you must use count() (to seeif it’sthere) or find() (to get an iterator to it).

The for loop that prints out the values of the container using operator[] has a number of
problems. First, it requires integral keys (which we happen to have in this case). Next and
worsg, if al the keys are not sequential, you'll end up counting from O to the size of the
container, and if there are some spots which don’t have key-value pairs you'll automatically
create them, and miss some of the higher values of the keys. Finally, if you look at the output
from the for loop you'll see that things are very busy, and it’s quite puzzling at first why there
are so many constructions and destructions for what appears to be a simple lookup. The
answer only becomes clear when you look at the code in the map template for operator|[],
which will be something like this:

mapped_type& operator[] (const key type& k) {

val ue_type tnp(k, T());
return (*((insert(tnp)).first)).second;

}
Following the trail, you'll find that map::value_typeis:
| t ypedef pair<const Key, T> val ue_type;
Now you need to know what a pair is, which can be found in <utility>:

tenpl ate <class T1, class T2>
struct pair {

typedef T1 first_type;

typedef T2 second_type;

T1 first;

T2 second;

pair();

pai r(const T1& x, const T2& y)

first(x), second(y) {}
/1 Tenpl atized copy-constructor
tenpl ate<class U, class V>
pai r (const pair<UyU, V> &p);

}s

It turns out thisis avery important (albeit simple) struct which is used quite a bit in the STL.
All it really does it package together two objects, but it’s very useful, especially when you
want to return two objects from a function (since aretur n statement only takes one object).
There's even a shorthand for creating a pair called make_pair (), whichisused in
AssociativeBasics.cpp.

So to retrace the steps, map::value_typeisapair of the key and the value of the map —
actualy, it'sasingle entry for the map. But notice that pair packages its objects by value,
which means that copy-constructions are necessary to get the objects into the pair. Thus, the

Chapter 15: Multiple Inheritance
234

creation of tmp in map::operator[] will involve at least a copy-constructor call and
destructor call for each object in the pair. Here, we're getting off easy because the key isan
int. But if you want to really see what kind of activity can result from map::operator[], try
running this:

/1: CO4: Noi syMap. cpp

/1 Mapping Noisy to Noisy
#i ncl ude "Noi sy. h"

#i ncl ude <map>

usi ng nanmespace std;

int main() {
map<Noi sy, Noi sy> mn;
Noi sy nl, n2;

cout << "\n-------- \n";

mmn[nl] = n2;

cout << "\n-------- \n";

cout << mmn[nl] << endl;

cout << "\n-------- \n";
Y I~

You'll seethat both the insertion and lookup generate alot of extra objects, and that’s because
of the creation of the tmp object. If you look back up at map::operator[] you'll seethat the
second line callsinsert() passing it tmp —that is, operator[] does an insertion every time.
The return value of insert() isadifferent kind of pair, wherefirst isan iterator pointing to
the key-value pair that was just inserted, and second is a bool indicating whether the

insertion took place. Y ou can see that operator[] grabsfirst (theiterator), dereferencesit to
produce the pair, and then returns the second which is the value at that location.

So on the upside, map has this fancy “make a new entry if oneisn’t there” behavior, but the
downside is that you always get alot of extra object creations and destructions when you use
map::operator[]. Fortunately, AssociativeBasics.cpp aso demonstrates how to reduce the
overhead of insertions and deletions, by not using operator[] if you don’t haveto. The
insert() member function is slightly more efficient than operator[]. With a set you only hold
one object, but with amap you hold key-value pairs, so insert() requires apair asits
argument. Here' s where make_pair () comesin handy, as you can see.

For looking objects up in amap, you can use count() to see whether akey isin the map, or
you can use find() to produce an iterator pointing directly at the key-value pair. Again, since
the map contains pair s that’ s what the iterator produces when you dereference it, so you have
to select first and second. When you run AssociativeBasics.cpp you'll notice that the iterator
approach involves no extra object creations or destructions at all. It’s not as easy to write or
read, though.

If you use amap with large, complex objects and discover there's too much overhead when
doing lookups and insertions (don’t assume this from the beginning — take the easy approach

Chapter 15: Multiple Inheritance
235

first and use a profiler to discover bottlenecks), then you can use the counted-handle approach
shown in Chapter XX so that you are only passing around small, lightweight objects.

Of course, you can a so iterate through a set or map and operate on each of its objects. This
will be demonstrated in later examples.

Generators and fillers
for associative containers

Y ou’ve seen how useful thefill(), fill_n(), generate() and generate_n() function templates
in <algorithm> have been for filling the sequential containers (vector, list and deque) with
data. However, these are implemented by using oper ator = to assign values into the sequential
containers, and the way that you add objects to associative containersis with their respective
insert() member functions. Thus the default “assignment” behavior causes a problem when
trying to use the “fill” and “generate” functions with associative containers.

One solution isto duplicate the “fill” and “generate” functions, creating new ones that can be
used with associative containers. It turns out that only the fill_n(') and generate n()
functions can be duplicated (fill() and generate() copy in between two iterators, which
doesn’t make sense with associative containers), but the job isfairly easy, since you have the
<algorithm> header file to work from (and since it contains templates, al the source code is
there):

/1. C04:assocCGen. h

/1 The fill _n() and generate_n() equivalents
/! for associative containers.

#i f ndef ASSOCGEN H

#def i ne ASSOCGEN H

t enpl at e<cl ass Assoc, class Count, class T>
voi d
assocFi Il _n(Assoc& a, Count n, const T& val) {
while(n-- > 0)
a.insert(val);

}

t enpl at e<cl ass Assoc, class Count, class Gen>
voi d assocCGen_n(Assoc& a, Count n, Gen g) {
while(n-- > 0)
a.insert(g());

}
#endi f // ASSOCGEN H ///: ~

Chapter 15: Multiple Inheritance
236

Y ou can see that instead of using iterators, the container classitself is passed (by reference, of
course, since you wouldn’t want to make alocal copy, fill it, and then have it discarded at the
end of the scope).

This code demonstrates two valuable lessons. The first lesson is that if the algorithms don’t do
what you want, copy the nearest thing and modify it. Y ou have the example at hand in the
STL header, so most of the work has already been done.

The second lesson is more pointed: if you look long enough, there’ s probably away to do it in
the STL without inventing anything new. The present problem can instead be solved by using
aninsert_iterator (produced by acall toinserter()), which callsinsert() to placeitemsin
the container instead of operator=. Thisisnot simply avariation of front_insert_iterator
(produced by acall to front_inserter()) or back_insert_iterator (produced by acall to
back_inserter()), since those iterators use push_front() and push_back(), respectively.
Each of the insert iteratorsis different by virtue of the member function it uses for insertion,
and insert() isthe one we need. Here's a demonstration that shows filling and generating
both amap and a set (of course, it can also be used with multimap and multiset). First, some
templatized, simple generators are created (this may seem like overkill, but you never know
when you'll heed them; for that reason they’re placed in a header file):

/1: CO4:Sinpl eGenerators.h

/1l Generic generators, including
/1 one that creates pairs

#i ncl ude <i ostreane

#include <utility>

/1 A generator that increments its val ue:
t enpl at e<t ypename T>
class IncrGen {
Ti;
public:
IncrGen(T ii) : i (ii) {}
T operator()() { return i++; }

IR

/1 A generator that produces an STL pair<>:
t enpl at e<t ypenanme T1, typename T2>
class PairGen {
T1 i;
T2 j;
public:
PairGen(Tl ii, T2 jj) - i(ii), j(jj) {}
std::pair<Tl, T2> operator()() {
return std::pair<Tl, T2>(i++, j++);

}

Chapter 15: Multiple Inheritance
237

}s

/1 A generic gl obal operator<<
/1 for printing any STL pair<>:
t enpl at e<t ypenane Pair> std::ostrean&
operator<<(std::ostream& os, const Pair& p) {
return os << p.first << "\t"
<< p.second << std::endl
Y I~

Both generators expect that T can be incremented, and they simply use oper ator ++ to
generate new values from whatever you used for initialization. Pair Gen creates an STL pair
object asitsreturn value, and that’s what can be placed into amap or multimap using
insert().

The last function is a generalization of operator << for ostreams, so that any pair can be
printed, assuming each element of the pair supports a stream oper ator <<. ASyou can see
below, this allows the use of copy() to output the map:

/1: CO04: Assoclnserter.cpp

/1 Using an insert_iterator so fill_n() and
/1 generate_n() can be used with associative
/1 containers

#i ncl ude " Si npl eGenerators. h"

#include <iterator>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

#i ncl ude <set >

#i ncl ude <map>

usi ng namespace std;

int main() {
set<int> s;
fill _n(inserter(s, s.begin()), 10, 47);
generate _n(inserter(s, s.begin()), 10,
I ncr Gen<i nt>(12));
copy(s. begin(), s.end(),
ostream.iterator<int>(cout, "\n"));

map<int, int>m

fill _n(inserter(m mbegin()), 10,
make_ pair (90, 120));

generate_n(inserter(m mbegin()), 10,
PairGen<int, int>(3, 9));

copy(m begin(), mend(),

Chapter 15: Multiple Inheritance
238

ostream.iterator<pair<int,int> >(cout,"\n"));
Y I~

The second argument to inserter isan iterator, which actually isn’t used in the case of
associative containers since they maintain their order internally, rather than allowing you to
tell them where the element should be inserted. However, an insert_iterator can be used with
many different types of containers so you must provide the iterator.

Note how the ostream_iterator is created to output a pair; this wouldn't have worked if the
oper ator << hadn’t been created, and since it’s atemplate it is automatically instantiated for
pair<int, int>.

The magic of maps

An ordinary array uses an integral value to index into a sequential set of elements of some
type. A map is an associative array, which means you associate one object with another in an
array-like fashion, but instead of selecting an array element with a number as you do with an
ordinary array, you look it up with an object! The example which follows counts the wordsin
atext file, so theindex isthe string object representing the word, and the value being looked
up isthe object that keeps count of the strings.

In asingle-item container like avector or list, there's only one thing being held. But ina
map, you've got two things: the key (what you look up by, asin mapname[key]) and the
value that results from the lookup with the key. If you simply want to move through the entire
map and list each key-value pair, you use an iterator, which when dereferenced produces a
pair object containing both the key and the value. Y ou access the members of a pair by
selecting first or second.

This same philosophy of packaging two items together is also used to insert elementsinto the
map, but the pair is created as part of the instantiated map and is called value_type,
containing the key and the value. So one option for inserting a new element isto create a
value_type object, loading it with the appropriate objects and then calling the insert()
member function for the map. Instead, the following example makes use of the
aforementioned special feature of map: if you're trying to find an object by passing in akey
to operator|[] and that object doesn’t exist, operator[] will automatically insert a new key-
value pair for you, using the default constructor for the value object. With that in mind,
consider an implementation of aword counting program:

[1: CO4: Wbr dCount . cpp

/1{L} StreaniTokeni zer

/1 Count occurrences of words using a map
#i ncl ude " StreaniTokeni zer. h"

#include "../require. h"

#i ncl ude <string>

#i ncl ude <map>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
239

#i ncl ude <fstreanp
usi ng namespace std;

cl ass Count {
int i;
public:
Count() : i(0) {}
void operator++(int) { i++; } // Post-increnent
int& val () { returni; }

};

t ypedef map<string, Count> WordMap;
typedef WordMap::iterator WM ter;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
St reanifokeni zer words(in);
Wor dMap wor dnap;
string word;
whil e((word = words. next()).size() !'= 0)
wor dmap[wor d] ++;
for(WMter w = wordnmap. begin();
w ! = wordnap. end(); wt+)
cout << (*w).first << "
<< (*w).second.val () << endl;
Y I~

The need for the Count classisto contain an int that’s automatically initialized to zero. This
is necessary because of the crucia line:

| wor dmap[wor d] ++;

This finds the word that has been produced by StreamT okenizer and increments the Count
object associated with that word, which isfine aslong asthere is a key-value pair for that
string. If thereisn’t, the map automatically inserts a key for the word you’ re looking up, and
a Count object, which isinitialized to zero by the default constructor. Thus, when it's
incremented the Count becomes 1.

Printing the entire list requires traversing it with an iterator (there’s no copy() shortcut for a
map unless you want to write an oper ator << for the pair in the map). As previously
mentioned, dereferencing this iterator produces a pair object, with the first member the key
and the second member the value. In this case second is a Count object, so itsval() member
must be called to produce the actual word count.

Chapter 15: Multiple Inheritance
240

If you want to find the count for a particular word, you can use the array index operator, like
this:

cout << "the: << wordnap["the"].val () << endl;

Y ou can see that one of the great advantages of the map is the clarity of the syntax; an
associative array makes intuitive sense to the reader (note, however, that if “the” isn't already
in the wordmap a new entry will be created!).

A command-line argument tool

A problem that often comes up in programming is the management of program arguments that
you can specify on the command line. Usually you'd like to have a set of defaultsthat can be
changed via the command line. The following tool expects the command line argumentsto be
in the form flagl=valuel with no spaces around the ‘=" (so it will be treated asasingle
argument). The ProgVal class simply inherits from map<string, string>:

/1: CO4:ProgVal s.h

/1 Program val ues can be changed by command |ine
#i f ndef PROGVALS H

#defi ne PROGVALS H

#i ncl ude <map>

#i ncl ude <i ostreanp

#i ncl ude <string>

cl ass ProgVal s
public std::map<std::string, std::string> {
public:
ProgVal s(std: :string defaults[][2], int sz);
voi d parse(int argc, char* argv[],
std::string usage, int offset = 1);
void print(std::ostream& out = std::cout);
i
#endi f // PROGVALS H ///:~

The constructor expects an array of string pairs (asyou'll see, thisalowsyou to initiaize it
with an array of char*) and the size of that array. The par se() member function is handed the
command-line arguments along with a“usage” string to print if the command lineis given
incorrectly, and the “offset” which tells it which command-line argument to start with (so you
can have non-flag arguments at the beginning of the command line). Finally, print() displays
the values. Here is the implementation:

[1: CO4:ProgVals.cpp {O
#i ncl ude "ProgVal s. h"
usi ng nanmespace std;

ProgVal s: : ProgVal s(

Chapter 15: Multiple Inheritance
241

std::string defaults[][2], int sz) {
for(int i =0; i < sz; i++4)
i nsert (make_pai r(
defaul ts[i][0], defaults[i][1]));
}

void ProgVal s::parse(int argc, char* argv[],
string usage, int offset) {
/1 Parse and apply additiona
/1 command-|ine argunents:
for(int i = offset; i < argc; i++) {
string flag(argv[i]);
int equal = flag.find('=");
i f(equal == string::npos) {
cerr << "Conmand line error: " <<
argv[i] << endl << usage << endl
continue; // Next argunent
}
string nane = flag.substr (0, equal);
string value = flag.substr(equal + 1);
if(find(nane) == end()) {
cerr << name << endl << usage << endl|
continue; // Next argunent

operator[](nanme) = val ue;
}
}

void ProgVal s::print(ostream& out) {
out << "Program val ues:" << endl;
for(iterator it = begin(); it != end(); it++)
out << (*it).first << " ="
<< (*it).second << endl
Y I~

The constructor usesthe STL make _pair (') helper function to convert each pair of char* into
apair object that can be inserted into the map. In par se(), each command-line argument is
checked for the existence of the telltale ‘=" sign (reporting an error if it isn’t there), and then
is broken into two strings, the name which appears before the ‘=', and the value which
appears after. The operator|[] is then used to change the existing value to the new one.

Here's an example to test the tool:

/1: CO4: ProgVal Test. cpp
/1{L} ProgVvals

Chapter 15: Multiple Inheritance

242

#i ncl ude "ProgVal s. h"
usi ng namespace std;

string defaults[][2] = {

{ "color", "red" },
{ "size", "mediun },
{ "shape", "rectangular" },
{ "action", "hopping"},
}s
const char* usage = "usage:\n"
"ProgVal Test [flagl=vall flag2=val2 ...]\n"
"(Note no space around '=")\n"

"Where the flags can be any of: \n"
"color, size, shape, action \n";

/1 So it can be used gl obally:
ProgVal s pval s(defaults,
si zeof defaults / sizeof *defaults);

class Animal {
string color, size, shape, action
public:
Ani nal (string col, string sz,
string shp, string act)

/1 Default constructor uses program default
/1 val ues, possibly change on command |i ne:
Aninmal () : color(pvals["color"]),
si ze(pval s["size"]), shape(pval s["shape"]),
action(pval s["action"]) {}
void print() {

cout << "color = " << color << end
<< "size = " << size << end
<< "shape = " << shape << end
<< "action = " << action << endl

}

/1 And of course pvals can be used anywhere
/1 else you'd |ike.

}s

int main(int argc, char* argv[]) {
/1 Initialize and parse command |ine val ues

Chapter 15: Multiple Inheritance
243

.color(col),size(sz), shape(shp), action(act){}

/1 before any code that uses pvals is called:
pval s. parse(argc, argv, usage);
pval s. print();
Ani mal a;
cout << "Animal a val ues:
a.print();

Y I~

This program can create Animal objects with different characteristics, and those
characteristics can be established with the command line. The default characteristics are given
in the two-dimensional array of char* called defaults and, after the usage string you can see
aglobal instance of ProgVals called pvalsis created; thisisimportant because it allows the
rest of the code in the program to access the values.

<< endl ;

Note that Animal’s default constructor uses the valuesin pvals inside its constructor
initializer list. When you run the program you can try creating different animal characteristics.

Many command-line programs also use a style of beginning a flag with a hyphen, and
sometimes they use single-character flags.

The STL map is used in numerous places throughout the rest of this book.

Multimaps and duplicate keys

A multimap isamap that can contain duplicate keys. At first this may seem like a strange
idea, but it can occur surprisingly often. A phone book, for example, can have many entries
with the same name.

Suppose you are monitoring wildlife, and you want to keep track of where and when each
type of animal is spotted. Thus, you may see many animals of the same kind, all in different
locations and at different times. So if the type of anima is the key, you'll need amultimap.
Here' swhat it looks like:

//: CO4: W I dLi feMonitor.cpp
#i ncl ude <vector>

#i ncl ude <map>

#i ncl ude <string>

#i ncl ude <al gorithne

#i ncl ude <i ostreanp

#i ncl ude <sstreanp

#i ncl ude <cti me>

usi ng nanmespace std;

cl ass Dat aPoi nt {
int x, y; // Location coordinates
time_t time; // Time of Sighting

Chapter 15: Multiple Inheritance
244

public:
DataPoint () : x(0), y(0), time(0) {}
DataPoint (int xx, int yy, time_t tn
x(xx), y(yy), time(tm {}

/1l Synthesi zed operator=, copy-constructor OK
int getX() { return x; }

int getY() { returny; }

time_t* getTime() { return &ine; }

b

string animal[] = {
“chi pmunk”, "beaver", "marnot", "weasel"
"squirrel", "ptarm gan", "bear", "eagle",
"hawk", "vole", "deer", "otter", "humm ngbird",

const int asz = sizeof aninmal/sizeof *aninal;
vector<string> ani mal s(aninmal, aninmal + asz);

/1 Al the information is contained in a
/1 "Sighting," which can be sent to an ostream
t ypedef pair<string, DataPoint> Sighting;

ostreami
oper at or<<(ostrean& os, const Sighting& s) {
return os << s.first << " sighted at x= " <<
s.second.getX() << ", y= " << s.second. get Y()
<< ", time =" << ctinme(s.second.getTine());

}

/1 A generator for Sightings:
class SightingGen {
vect or<string>& ani mal s;
static const int d = 100;
public:
Si ghti ngGen(vector<string>& an)
ani mal s(an) { srand(tine(0)); }
Si ghting operator()() {
Si ghting result;
int select = rand() % ani mal s. si ze();
result.first = ani nal s[sel ect];
result.second = Dat aPoi nt (
rand() %d, rand() %d, tinme(0));
return result;

Chapter 15: Multiple Inheritance
245

}
}s

typedef multimap<string, DataPoint> DataMap;
typedef DataMap::iterator DMter;

int main() {
Dat aMap si ghti ngs;
generate_n(
i nserter(sightings, sightings.begin()),
50, SightingGen(aninmals));
/1 Print everything:
copy(si ghtings. begin(), sightings.end(),
ostream.iterator<Si ghti ng>(cout, ""));
/1 Print sightings for selected aninal:
while(true) {
cout << "select an animal or 'q" to quit: ";
for(int i =0; i < aninmals.size(); i++)
cout <<'['<< i <<']'<< animals[i] << ' ';
cout << endl
string reply;
cin >> reply;

if(reply.at(0) =="'q') return O;
istringstreamr(reply);

int i;

r >>i; // Converts to int

i % animals.size();
/1 lterators in "range" denote begin, one
/1 past end of matching range:
pair<DMter, DMter> range =
si ghtings. equal range(aninals[i]);
copy(range.first, range.second,
ostream.iterator<Si ghti ng>(cout, ""));

}
Y 11~

All the data about a sighting is encapsulated into the class DataPoint, which is simple enough
that it can rely on the synthesized assignment and copy-constructor. It uses the Standard C
library time functions to record the time of the sighting.

In the array of string animal, notice that the char* constructor is automatically used during
initialization, which makes initializing an array of string quite convenient. Since it's easier to
use the animal namesin a vector, the length of the array is calculated and avector<string> is
initialized using the vector (iterator, iterator) constructor.

Chapter 15: Multiple Inheritance
246

The key-value pairs that make up a Sighting are the string which names the type of animal,
and the DataPoint that says where and when it was sighted. The standard pair template
combines these two types and is typedefed to produce the Sighting type. Then an ostream
oper ator << is created for Sighting; thiswill allow you to iterate through a map or multimap
of Sightingsand print it out.

SightingGen generates random sightings at random data points to use for testing. It has the

usual operator (') necessary for afunction object, but it also has a constructor to capture and
store areference to a vector <string>, which is where the aforementioned animal names are
stored.

A DataM ap isamultimap of string-DataPoint pairs, which means it stores Sightings. It is
filled with 50 Sightings using generate_n(), and printed out (notice that because thereis an
oper ator << that takes a Sighting, an ostream_iterator can be created). At this point the user
is asked to select the animal that they want to see all the sightings for. If you press‘q’ the
program will quit, but if you select an animal number, then the equal_range() member
function isinvoked. Thisreturns an iterator (DM Iter) to the beginning of the set of matching
pairs, and one indicating past-the-end of the set. Since only one object can be returned from a
function, equal_range() makes use of pair. Since the range pair has the beginning and
ending iterators of the matching set, those iterators can be used in copy() to print out al the
sightings for a particular type of animal.

Multisets

Y ou’ ve seen the set, which only allows one object of each value to be inserted. The multiset
is odd by comparison since it allows more than one object of each valueto beinserted. This
seems to go against the whole idea of “setness,” where you can ask “is‘it’ in thisset?’ If
there can be more than one of ‘it’, then what does that question mean?

With some thought, you can see that it makes no sense to have more than one object of the
same value in a set if those duplicate objects are exactly the same (with the possible exception
of counting occurrences of objects, but as seen earlier in this chapter that can be handled in an
alternative, more elegant fashion). Thus each duplicate object will have something that makes
it unique from the other duplicates — most likely different state information that is not used in
the calculation of the value during the comparison. That is, to the comparison operation, the
objects ook the same but they actually contain some differing internal state.

Likeany STL container that must order its elements, the multiset template uses the less
template by default to determine element ordering. This uses the contained classes
operator <, but you may of course substitute your own comparison function.

Consider a simple class that contains one element that is used in the comparison, and another
that is not:

[1: CO4:MultiSetl.cpp
/] Denpnstration of multiset behavior
#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
247

#i ncl ude <set >

#i ncl ude <al gorithne
#i ncl ude <cti nme>
usi ng namespace std;

class X {
char c; // Used in conparison
int i; // Not used in conparison
/1 Don't need default constructor and operator=
X();

X& operator=(const X&) ;
/1 Usually need a copy-constructor (but the
/1 synthesized version works here)

public:
X(char cc, int ii) : c(cc), i(ii) {}
/1 Notice no operator==is required

friend bool operator<(const X& x, const X& y) {
return x.c < y.c;

}

friend ostream& operator<<(ostream& os, X x) {
return os << x.c << ":" << X.i;

}
}s

cl ass Xgen {
static int i;
/1 Nunber of characters to select from
static const int span = 6;
public:
Xgen() { srand(tine(0)); }
X operator() () {
char ¢ = '"A + rand() % span
return X(c, i++);
}
b

int Xgen::i = 0;

typedef multiset<X> Xmset;
typedef Xnset::const iterator Xmt;

int main() {
Xnset mset;

Chapter 15: Multiple Inheritance
248

[/ Fill it with X's:

generate_n(inserter(nset, nset.begin()),
25, Xgen());

/1 Initialize a regular set from mset:

set <X> uni que(nset. begin(), nset.end());

copy(uni que. begi n(), uni que.end(),

ostream.iterator<xX>(cout, " "));
cout << "\np----\n";
/1 l1terate over the unique val ues:
for(set<X>::iterator i = unique.begin();

i 1= unique.end(); i++) {
pair<Xmt, Xmt> p = nset.equal _range(*i);
copy(p.first, p.second,
ostream.iterator<xX>(cout, " "));
cout << endl;

}
Y 11~

In X, al the comparisons are made with the char c. The comparison is performed with
operator <, whichisall that is necessary for the multiset, since in this example the default
less comparison object is used. The class Xgen is used to randomly generate X objects, but
the comparison value is restricted to the span from ‘A’ to ‘E’. In main(), amultiset<X>is
created and filled with 25 X objects using Xgen, guaranteeing that there will be duplicate
keys. So that we know what the unique values are, aregular set<X> is created from the
multiset (using the iterator, iterator constructor). These values are displayed, then each one
is used to produce the equal_range() in the multiset (equal_range() has the same meaning
here as it does with multimap: al the elements with matching keys). Each set of matching
keysisthen printed.

As a second example, a (possibly) more elegant version of WordCount.cpp can be created
using multiset:

[/: CO4: Mul ti Set Wbr dCount . cpp

/1{L} StreaniTokeni zer

/1 Count occurrences of words using a multiset
#i ncl ude " StreaniTokeni zer. h"

#include "../require. h"

#i ncl ude <string>

#i ncl ude <set>

#i ncl ude <fstreanr

#i nclude <iterator>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);

Chapter 15: Multiple Inheritance
249

ifstreamin(argv[1]);

assure(in, argv[1]);

St reanifokeni zer words(in);

nmul ti set<string> wordnset;

string word;

whil e((word = words. next()).size() !'= 0)
wor dnset . i nsert (word);

typedef multiset<string>: :iterator Msit;

MSit it = wordnset. begin();

while(it '= wordnset.end()) {
pai r<mMsit, MSit> p=wordnset.equal _range(*it);
int count = distance(p.first, p.second);
cout << *it << ": " << count << endl
it = p.second; // Myve to the next word

}
Y 11~

The setup in main() isidentical to WordCount.cpp, but then each word is simply inserted
into the multiset<string>. Aniterator is created and initialized to the beginning of the
multiset; dereferencing thisiterator produces the current word. equal_range() produces the
starting and ending iterators of the word that’s currently selected, and the STL algorithm
distance() (whichisin <iterator>) is used to count the number of elementsin that range.
Then theiterator it is moved forward to the end of the range, which putsit at the next word.
Although if you' re unfamiliar with the multiset this code can seem more complex, the density
of it and the lack of need for supporting classes like Count has alot of appeal.

Inthe end, isthisreally a“set,” or should it be called something else? An alternative isthe
generic “bag” that has been defined in some container libraries, since a bag holds anything at
all without discrimination — including duplicate objects. Thisis close, but it doesn’t quite fit
since a bag has no specification about how elements should be ordered, while amultiset
(which requiresthat all duplicate elements be adjacent to each other) is even more restrictive
than the concept of a set, which could use a hashing function to order its elements, in which
case they would not be in sorted order. Besides, if you wanted to store a bunch of objects
without any special criterions, you'd probably just use avector, deque or list.

Combining STL containers

When using a thesaurus, you have aword and you want to know all the words that are similar.
When you look up aword, then, you want alist of words as the result. Here, the “ multi”
containers (multimap or multiset) are not appropriate. The solution isto combine containers,
which is easily done using the STL. Here, we need atool that turns out to be a powerful
general concept, whichisamap of vector:

| //: C04: Thesaurus. cpp

Chapter 15: Multiple Inheritance
250

/1 A map of vectors
#i ncl ude <map>

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp
#i ncl ude <al gorithne
#i ncl ude <cti nme>
usi ng nanmespace std;

typedef map<string, vector<string> > Thesaurus;
typedef pair<string, vector<string> > TEntry;
typedef Thesaurus::iterator Tlter

ost ream& oper at or <<(ostreanm& 0s, const TEntry& t){
0os << t.first << ": ";
copy(t.second. begin(), t.second.end(),
ostream.iterator<string>(os, " "));
return os;

}

/1 A generator for thesaurus test entries:
cl ass ThesaurusGen {
static const string letters;
static int count;
public:
int maxSize() { return letters.size(); }
ThesaurusGen() { srand(tinme(0)); }
TEntry operator()() {
TEntry result;
i f(count >= maxSize()) count = O;

result.first = letters[count++];
int entries = (rand() %5) + 2;
for(int i =0; i <entries; i++) {

int choice = rand() % maxSi ze();
char cbuf[2] ={ 0 };
cbuf[0] = letters[choice];
resul t.second. push_back(cbuf);

}

return result;

}
}s

i nt ThesaurusGen::count = O;

Chapter 15: Multiple Inheritance
251

const string ThesaurusGen::|letters("ABCDEFGH JKL"
" MNOPQRSTUW\KYZabcdef ghi j kIl mopqgr st uvwyz") ;

int main() {
Thesaur us t hesaurus;
/1 Fill with 10 entries:
generate_n(
i nserter(thesaurus, thesaurus.begin()),
10, ThesaurusGen());
/1 Print everything:
copy(thesaurus. begi n(), thesaurus.end(),
ostream.iterator<TEntry>(cout, "\n"));
/1 Ask for a "word" to |ook up
while(true) {
cout << "Select a \"word\", 0 to quit: ";
for(Tlter it = thesaurus. begin();
it != thesaurus.end(); it++)
cout << (*it).first << ' ';
cout << endl
string reply;
cin >> reply;
if(reply.at(0) == '0") return 0; // Quit
i f(thesaurus.find(reply) == thesaurus.end())
continue; // Not in list, try again
vector<string>& v = thesaurus[reply];
copy(v. begin(), v.end(),
ostream.iterator<string>(cout, " "));
cout << endl

}
Y 11~

A Thesaurus maps a string (the word) to a vector <string> (the synonyms). A TEntry isa
single entry in a Thesaur us. By creating an ostream oper ator << for a TEntry, asingle entry
from the Thesaur us can easily be printed (and the whole Thesaur us can easily be printed
with copy()). The ThesaurusGen creates “words’ (which are just single |etters) and
“synonyms’ for those words (which are just other randomly-chosen single letters) to be used
as thesaurus entries. It randomly chooses the number of synonym entries to make, but there
must be at least two. All the letters are chosen by indexing into astatic string that is part of
ThesaurusGen.

Inmain(), aThesaurusis created, filled with 10 entries and printed using the copy()
algorithm. Then the user is requested to choose a“word” to look up by typing the letter of that
word. The find() member function is used to find whether the entry existsin the map
(remember, you don’'t want to use operator[] or it will automatically make anew entry if it

Chapter 15: Multiple Inheritance
252

doesn't find amatch!). If so, operator[] is used to fetch out the vector <string> which is
displayed.
Because templates make the expression of powerful concepts easy, you can take this concept

much further, creating a map of vector s containing maps, etc. For that matter, you can
combine any of the STL containers this way.

Cleaning up
containers of pointers

In Stishape.cpp, the pointers did not clean themselves up automatically. It would be
convenient to be able to do this easily, rather than writing out the code each time. Hereisa
function template that will clean up the pointersin any sequence container; note that it is
placed in the book’ s root directory for easy access:

/1: :purge.h

/1 Delete pointers in an STL sequence contai ner
#i f ndef PURGE_H

#def i ne PURGE_H

#i ncl ude <al gorithne

tenpl at e<cl ass Seq> void purge(Seq& c) {
typenane Seq:.:iterator i;

for(i = c.begin(); i !'=c.end(); i++) {
delete *i;
*I = 0;

}

}

/1 lterator version:
tenpl at e<cl ass I nplt>
void purge(lnplt begin, Inplt end) {
whi | e(begin !'= end) {
del et e *begi n;
*begin = 0;
begi n++;
}
}
#endif // PURGEH ///:~

In the first version of purge(), note that typename is absolutely necessary; indeed thisis
exactly the case that the keyword was added for: Seq is atemplate argument, and iterator is

Chapter 15: Multiple Inheritance
253

something that is nested within that template. So what does Seq::iterator refer to? The
typename keyword specifies that it refers to atype, and not something else.

While the container version of purge must work with an STL-style container, the iterator
version of purge() will work with any range, including an array.

Hereis Stlshape.cpp, modified to use the purge() function:

[1: CO4:Stl shape2. cpp

/1 Stlshape.cpp with the purge() function
#i nclude "../purge.h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng nanmespace std;

cl ass Shape {

public:
virtual void draw() = O;
virtual ~Shape() {};

b

class Circle : public Shape {

public:
void draw() { cout << "Circle::dramn"; }
~Circle() { cout << "~Circle\n"; }

b

class Triangle : public Shape {

public:
void draw() { cout << "Triangle::dramn"; }
~Triangle() { cout << "~Triangle\n"; }

b

cl ass Square : public Shape {

public:
void draw() { cout << "Square::drawn"; }
~Square() { cout << "~Square\n"; }

b

t ypedef std::vector<Shape*> Contai ner;
typedef Container::iterator lter;

int main() {
Cont ai ner shapes;
shapes. push_back(new Circl e);

Chapter 15: Multiple Inheritance
254

shapes. push_back(new Square);
shapes. push_back(new Tri angl e);
for(lter i = shapes. begin();
i 1= shapes.end(); i++)
(*i)->draw();
pur ge(shapes) ;
Y I~

When using purge(), you must be careful to consider ownership issues— if an object pointer
is held in more than one container, then you must be sure not to delete it twice, and you don’t
want to destroy the object in the first container before the second one is finished with it.
Purging the same container twice is not a problem, because purge() setsthe pointer to zero
once it deletes that pointer, and calling delete for a zero pointer is a safe operation.

Creating your own containers

With the STL as afoundation, it's possible to create your own containers. Assuming you
follow the same model of providing iterators, your new container will behave asif it were a
built-in STL container.

Consider the “ring” data structure, which is a circular sequence container. If you reach the
end, it just wraps around to the beginning. This can be implemented on top of alist as
follows:

/1: CO4:Ring.cpp

/1 Making a "ring" data structure fromthe STL
#i ncl ude <i ostreanp

#i ncl ude <list>

#i ncl ude <string>

usi ng namespace std;

t enpl at e<cl ass T>
class Ring {
[ist<T> |st;
public:
/1 Declaration necessary so the follow ng
/1 'friend statenent sees this 'iterator'
/1 instead of std::iterator:
class iterator;
friend class iterator;
class iterator : public std::iterator<
std::bidirectional iterator_tag, T,ptrdiff_t>{
list<T>::iterator it;
[ist<T>* r;

Chapter 15: Multiple Inheritance
255

public:
/1 "typenane" necessary to resolve nesting:
iterator(list<T>& |st,
const typenane list<T> :iterator& i)
r(&st), it(i) {}
bool operator==(const iterator& x) const {
return it == x.it;
}
bool operator!=(const iterator& x) const {
return ' (*this == x);
}
list<T>::reference operator*() const {
return *it;
}
iterator& operator++() {
++it;
if(it == r->end())
it = r->begin();
return *this;
}
iterator operator++(int) {
iterator tnp = *this;
++*t hi s;
return tnp;
}
iterator& operator--(
if(it == r->begin()
it = r->end();
--it;
return *this;

) |
)

}

iterator operator--(int) {

iterator tnp = *this;

--*this;

return tnp;
}
iterator insert(const T& x){

return iterator(*r, r->insert(it, x));
}
iterator erase() {

return iterator(*r, r->erase(it));
}

}s

Chapter 15: Multiple Inheritance
256

voi d push_back(const T& x) {
| st. push_back(x);
}
iterator begin() {
return iterator(lst, Ist.begin());

int size() { return Ist.size(); }

};

int main() {
Ri ng<string> rs;
rs. push_back("one");
rs.push_back("two");
rs.push_back("three");
rs.push_back("four");
rs.push_back("five");
Ri ng<string>::iterator it = rs.begin();
it++; it++;
it.insert("six");
it = rs.begin();
/1 Twice around the ring:

for(int i =0; i <rs.size() * 2; i++)
cout << *it++ << endl;
Y I~

Y ou can see that the iterator is where most of the coding is done. The Ring iterator must
know how to loop back to the beginning, so it must keep areference to thelist of its“parent”
Ring object in order to know if it's at the end and how to get back to the beginning.

You'll notice that the interface for Ring is quite limited; in particular there isno end(), since
aring just keeps looping. This means that you won't be able to use a Ring in any STL
algorithms that require a past-the-end iterator — which is many of them. (It turns out that
adding this feature is a non-trivial exercise). Although this can seem limiting, consider stack,
queue and priority_queue, which don’t produce any iterators at all!

Freely-available
STL extensions

Although the STL containers may provide all the functionality you'll ever need, they are not
complete. For example, the standard implementations of set and map use trees, and athough
these are reasonably fast they may not be fast enough for your needs. In the C++ Standards

Committee it was generally agreed that hashed implementations of set and map should have

Chapter 15: Multiple Inheritance
257

been included in Standard C++, however there was not considered to be enough time to add
these components, and thus they were left out.

Fortunately, there are freely-avail able alternatives. One of the nice things about the STL is
that it establishes a basic model for creating STL-like classes, so anything built using the
same model is easy to understand if you are already familiar with the STL.

The SGI STL (freely available at http://www.sgi.com/Technology/STL/) is one of the most
robust implementations of the STL, and can be used to replace your compiler’s STL if that is
found wanting. In addition they’ ve added a number of extensions including hash_set,
hash_multiset, hash_map, hash_multimap, slist (asingly-linked list) and rope (a variant of
string optimized for very large strings and fast concatenation and substring operations).

Let’s consider a performance comparison between a tree-based map and the SGI hash_map.
To keep things simple, the mappings will be fromint to int:

/1: CO4: MapVsHashMap. cpp

/1 The hash_nmap header is not part of the

/1 Standard C++ STL. It is an extension that
/1 is only available as part of the SA@ STL:
#i ncl ude <hash_map>

#i ncl ude <i ostreanp

#i ncl ude <map>

#i ncl ude <cti nme>

usi ng namespace std;

int main(){
hash_nap<int, int> hm
map<int, int>m
clock t ticks = clock();
for(int i =0; i < 100; i++)
for(int j = 0; j < 1000; j++)
minsert(make pair(j,j));
cout << "map insertions:
<< clock() - ticks << endl
ticks = clock();
for(int i =0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hminsert(nmake_pair(j,j));
cout << "hash_map insertions:
<< clock() - ticks << endl
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
njl;

Chapter 15: Multiple Inheritance
258

cout << "map::operator[] | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hnfj];

cout << "hash_map::operator[] | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
mfind(j);

cout << "map::find() | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hmfind(j);

cout << "hash_map::find() | ookups:
<< clock() - ticks << endl;
Y I~

The performance test | ran showed a speed improvement of roughly 4:1 for the hash_map
over the map in all operations (and as expected, find() is slightly faster than operator[] for
lookups for both types of map). If a profiler shows a bottleneck in your map, you should
consider ahash_map.

Summary

The goal of this chapter was not just to introduce the STL containers in some considerable
depth (of course, not every detail could be covered here, but you should have enough now that
you can look up further information in the other resources). My higher hope is that this
chapter has made you grasp the incredible power available in the STL, and shown you how
much faster and more efficient your programming activities can be by using and
understanding the STL.

Thefact that | could not escape from introducing some of the STL algorithms in this chapter
suggests how useful they can be. In the next chapter you'll get a much more focused look at
the algorithms.

Chapter 15: Multiple Inheritance
259

Exercises

1.

o s

© oOoNOo

10.

11.

12.
13.

Create a set<char >, then open afile (whose nameis provided on the
command line) and read that filein achar at atime, placing each char in
the set. Print the results and observe the organization, and whether there are
any lettersin the alphabet that are not used in that particular file.

Create akind of “hangman” game. Create a class that contains achar and a
bool to indicate whether that char has been guessed yet. Randomly select a
word from afile, and read it into avector of your new type. Repeatedly ask
the user for a character guess, and after each guess display the charactersin
the word that have been guessed, and underscores for the characters that
haven't. Allow away for the user to guess the whole word. Decrement a
value for each guess, and if the user can get the whole word before the value
goes to zero, they win.

Modify WordCount.cpp so that it usesinsert() instead of operator|[] to
insert elementsin the map.

Modify WordCount.cpp so that it uses amultimap instead of a map.
Create a generator that produces random int values between 0 and 20. Use
thisto fill amultiset<int>. Count the occurrences of each value, following
the example given in M ultiSetWor dCount.cpp.

Change StlShape.cpp so that it uses adeque instead of avector.

Modify Reversible.cpp so it works with deque and list instead of vector.
Modify Progvals.h and ProgVals.cpp so that they expect leading hyphens
to distinguish command-line arguments.

Create a second version of Progvals.h and ProgVals.cpp that uses a set
instead of a map to manage single-character flags on the command line
(such as-a-b -c etc) and also allows the characters to be ganged up behind
asingle hyphen (such as -abc).

Use a stack<int> and build a Fibonacci sequence on the stack. The
program’s command line should take the number of Fibonacci elements
desired, and you should have aloop that |ooks at the last two elements on
the stack and pushes a new one for every pass through the loop.

Open atext file whose name is provided on the command line. Read the file
aword at atime (hint: use >>) and use a multiset<string> to create aword
count for each word.

Modify BankTeller.cpp so that the policy that decides when ateller is
added or removed is encapsulated inside a class.

Create two classes A and B (feel free to choose more interesting names).
Create amultimap<A, B> and fill it with key-value pairs, ensuring that
there are some duplicate keys. Use equal_range() to discover and print a

Chapter 15: Multiple Inheritance

260

14.
15.

16.
17.
18.

19.
20.
21.

22.

23.

range of objects with duplicate keys. Note you may have to add some
functionsin A and/or B to make this program work.

Perform the above exercise for amultiset<A>.

Create aclassthat has an oper ator < and an ostreamé& oper ator<<. The
class should contain a priority number. Create a generator for your class that
makes a random priority number. Fill apriority_queue using your
generator, then pull the elements out to show they are in the proper order.
Rewrite Ring.cpp o it uses adeque instead of alist for its underlying
implementation.

Modify Ring.cpp so that the underlying implementation can be chosen
using a template argument (let that template argument default to list).

Open afileand read it into asingle string. Turnthe stringinto a

stringstr eam. Read tokens from the stringstream into alist<string> using
aTokenlterator.

Compare the performance of stack based on whether it isimplemented with
vector, deque or list.

Create an iterator class called BitBucket that just absorbs whatever you
send to it without writing it anywhere.

Create atemplate that implements asingly-linked list called SList. Provide
adefault constructor, begin(') and end() functions (thus you must create
the appropriate nested iterator), insert(), erase() and a destructor.

(More challenging) Create alittle command language. Each command can
simply print its name and its arguments, but you may also want to make it
perform other activities like run programs. The commands will be read from
afile that you pass as an command-line argument, or from standard input if
no file is given. Each command is on asingle line, and lines beginning with
‘# are comments. A line begins with the one-word command itself,
followed by any number of arguments. Commands and arguments are
separated by spaces. Use amap that maps string objects (the name of the
command) to object pointers. The object pointers point to objects of a base
class Command that has avirtual execute(string args) function, where
args contains all the arguments for that command (execute() will parseits
own arguments from ar gs). Each different type of command is represented
by a classthat is inherited from Command.

Add features to the above exercise so that you can have labels, if-then
statements, and the ability to jump program execution to alabel.

Chapter 15: Multiple Inheritance

261

5. STL Algorithms

The other half of the STL isthe algorithms, which are
templatized functions designed to work with the containers
(or, as you will see, anything that can behave like a
container, including arrays and string objects).

The STL was originally designed around the algorithms. The goal was that you use algorithms
for almost every piece of code that you write. In this sense it was a bit of an experiment, and
only time will tell how well it works. The real test will be in how easy or difficult it isfor the
average programmer to adapt. At the end of this chapter you'll be able to decide for yourself
whether you find the algorithms addictive or too confusing to remember. If you're like me,
you'll resist them at first but then tend to use them more and more.

Before you make your judgment, however, there's one other thing to consider. The STL
algorithms provide a vocabulary with which to describe solutions. That is, once you become
familiar with the algorithms you'll have a new set of words with which to discuss what you're
doing, and these words are at a higher level than what you' ve had before. Y ou don’t have to
say “thisloop moves through and assigns from here to there ... oh, | see, it's copying!”
Instead, you say copy(). Thisisthekind of thing we' ve been doing in computer
programming from the beginning — creating more dense ways to express what we' re doing
and spending less time saying how we' re doing it. Whether the STL algorithms and generic
programming are a great success in accomplishing this remains to be seen, but that is
certainly the objective.

Function objects

A concept that is used heavily in the STL algorithms is the function object, which was
introduced in the previous chapter. A function object has an overloaded operator (), and the
result isthat atemplate function can't tell whether you' ve handed it a pointer to a function or
an object that has an operator (); all the template function knowsis that it can attach an
argument list to the object asif it were a pointer to a function:

/1: CO5: Funchj ect.cpp

/1 Sinple function objects
#i ncl ude <i ostreanp

usi ng namespace std;

263

t enpl at e<cl ass UnaryFunc, class T>
void cal | Func(T& x, UnaryFunc f) {

f(x);
}

void g(int& x) {
X = 47;
}

struct UFunc {
void operator()(int& x) {
X = 48;
}
b

int main() {
int y =0;
cal l Func(y, 9);
cout << y << endl;
y =0;
cal | Func(y, UFunc());
cout << y << endl;
Y I~

The template callFunc() says “giveme an f and an x, and I'll write the code f(x).” Inmain(),
you can see that it doesn’t matter if f isapointer to afunction (asin the case of g()), or if it's
afunction object (which is created as a temporary object by the expression UFunc()). Notice
you can only accomplish this genericity with atemplate function; a non-template function is
too particular about its argument types to allow such athing. The STL algorithms use this
flexibility to take either afunction pointer or a function object, but you'll usually find that
creating a function object is more powerful and flexible.

The function object is actually a variation on the theme of a callback, which is described in
the design patterns chapter. A callback allows you to vary the behavior of a function or object
by passing, as an argument, a way to execute some other piece of code. Here, we are handing
callFunc() apointer to afunction or a function object.

The following descriptions of function objects should not only make that topic clear, but also
give you an introduction to the way the STL algorithms work.

Classification of function objects

Just asthe STL classifies iterators (based on their capabilities), it also classifies function
objects based on the number of arguments that their operator () takes and the kind of value
returned by that operator (of course, thisis also true for function pointers when you treat them

Chapter 15: Multiple Inheritance
264

as function objects). The classification of function objectsin the STL is based on whether the
oper ator () takes zero, one or two arguments, and if it returns abool or non-bool value.

Generator: Takes no arguments, and returns a value of the desired type. A
RandomNumber Gener ator isa special case.

UnaryFunction: Takes a single argument of any type and returns a value which may be of a
different type.

BinaryFunction: Takes two arguments of any two types and returns a value of any type.

A specia case of the unary and binary functionsis the predicate, which simply means a
function that returns abool. A predicate is afunction you use to make atrue/false decision.

Predicate: Thiscan aso be called a UnaryPredicate. It takes a single argument of any type
and returns a bool.

BinaryPredicate: Takes two arguments of any two types and returns abool.

StrictWeakOrdering: A binary predicate that says that if you have two objects and neither
oneisless than the other, they can be regarded as equivalent to each other.

In addition, there are sometimes qualifications on object types that are passed to an agorithm.
These qualifications are given in the template argument type identifier name:

LessThanComparable: A classthat has aless-than operator <.
Assignable: A classthat has an assignment operator = for its own type.

EqualityComparable: A class that has an equivalence oper ator == for its own type.

Automatic creation of function objects

The STL has, in the header file <functional>, a set of templates that will automatically create
function objects for you. These generated function objects are admittedly simple, but the goal
isto provide very basic functionality that will allow you to compose more complicated
function objects, and in many situationsthisisall you'll need. Also, you'll see that there are
some function object adapters that allow you to take the simple function objects and make
them slightly more complicated.

Here are the templates that generate function objects, along with the expressions that they
effect.

Name Type Result produced by generated function
object

plus BinaryFunction | argl + arg2

minus BinaryFunction | argl - arg2

multiplies BinaryFunction | argl * arg2

Chapter 15: Multiple Inheritance
265

Name Type Result produced by generated function
object

divides BinaryFunction | argl/arg2

modulus BinaryFunction | argl % arg2

negate UnaryFunction | - argl

equal_to BinaryPredicate | argl == arg2

not_equal_to | BinaryPredicate | argl !=arg2

greater BinaryPredicate | argl > arg2

less BinaryPredicate | argl < arg2

greater_equal | BinaryPredicate | argl >= arg2

less equal BinaryPredicate | argl <= arg2

logical_and BinaryPredicate | argl & & arg2

logical_or BinaryPredicate | argl || arg2

logical_not UnaryPredicate | largl

not1() Unary Logical I(UnaryPredicate(argl))

not2() Binary Logical I(BinaryPredicate(argl, arg2))

The following example provides simple tests for each of the built-in basic function object
templates. Thisway, you can see how to use each one, along with their resulting behavior.

/1

/1

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

cout

/1 This wll

CO5: Functi onObj ects. cpp
/1 Using the predefined function object tenplates
in the Standard C++ library

be defined shortly:

"Generators. h"

<al gorithne
<vect or>
<i ostreane

<functi onal >
usi ng nanmespace std;

t enpl at e<t ypenane T>
voi d print(vector<T>& v,

if(*msg !'= 0)
<< mBg << ":"

char* msg = "") {

<< endl ;

Chapter 15: Multiple Inheritance

266

copy(v. begin(), v.end(),
ostreamiterator<T>(cout, " "));:
cout << endl

}

t enpl at e<t ypenane Contai n, typenanme UnaryFunc>
voi d test Unary(Contain& source, Contain& dest,
UnaryFunc f) {
transformsource. begi n(), source.end(),
dest. begin(), f);
}

t enpl at e<t ypenane Contai nl, typenane Contain2,
t ypenane Bi naryFunc>
voi d testBinary(Containl& srcl, Containl& src2
Cont ai n2& dest, BinaryFunc f) {
transform(srcl. begin(), srcl.end(),
src2. begin(), dest.begin(), f);
}

/1 Executes the expression, then stringizes the
/1 expression into the print statenent:

#define T(EXPR) EXPR print(r, "After " #EXPR)
/1 For Bool ean tests:

#defi ne B(EXPR) EXPR, print(br,"After " #EXPR)

/1 Bool ean random gener at or
struct BRand {
BRand() { srand(tine(0)); }
bool operator()() {
return rand() > RAND MAX / 2;
}
b

int main() {
const int sz = 10;
const int max = 50;
vector<int> x(sz), y(sz), r(sz);
/1 An integer random number gener ator
URandGen ur g(max) ;
generate_n(x.begin(), sz, urg);
generate_n(y.begin(), sz, urg);
/1 Add one to each to guarantee nonzero divide:

Chapter 15: Multiple Inheritance
267

transformy. begin(), y.end(), y.begin(),
bi nd2nd(pl us<i nt>(), 1));
/1 Guarantee one pair of elements is ==

x[0] = y[O];
print(x, "x");
print(y, "y");

/1 Operate on each elenment pair of x &y,
/1 putting the result into r:
T(testBinary(x, y, r, plus<int>()));
T(testBinary(x, y, r, mnus<int>()));
T(testBinary(x, y, r, nultiplies<int>(
T(testBinary(x, y, r, divides<int>()))
T(testBinary(x, y, r, nodulus<int>()))
T(testUnary(x, r, negate<int>()));
vect or<bool > br(sz); // For Boolean results
B(testBinary(x, y, br, equal _to<int>()));
B(testBinary(x, y, br, not_equal to<int>()));
B(testBinary(x, y, br, greater<int>()));
B(testBinary(x, y, br, less<int>()));
B(testBinary(x, y, br, greater_equal<int>()));
B(testBinary(x, y, br, less equal<int>()));
B(testBinary(x, y, br,
not 2(greater_equal <int>())));
B(testBinary(x,y,br,not2(less_equal<int>())));
vect or <bool > bl(sz), b2(sz);
generate_n(bl.begin(), sz, BRand());
generate_n(b2.begin(), sz, BRand());
print(bl, "bil");
print(b2, "b2");
B(testBinary(bl, b2, br, logical and<int>()));
B(testBinary(bl, b2, br, logical _or<int>()));
B(test Unary(bl, br, logical not<int>()));
B(test Unary(bl, br, notl(logical not<int>())));
Y I~

To keep this example small, some tools are created. The print() template is designed to print
any vector <T>, along with an optional message. Since print() usesthe STL copy()
algorithm to send objects to cout viaan ostream_iterator, the ostream_iterator must know
the type of object it is printing, and therefore the print(') template must know this type also.
However, you'll seein main() that the compiler can deduce the type of T when you hand it a
vector <T>, so you don’t have to hand it the template argument explicitly; you just say
print(x) to print the vector <T> x.

?));

Chapter 15: Multiple Inheritance
268

The next two template functions automate the process of testing the various function object
templates. There are two since the function objects are either unary or binary. In testUnary(),
you pass a source and destination vector, and a unary function object to apply to the source
vector to produce the destination vector. In testBinary(), there are two source vectors which
are fed to a binary function to produce the destination vector. In both cases, the template
functions simply turn around and call the transform() algorithm, although the tests could
certainly be more complex.

For each test, you want to see a string describing what the test is, followed by the results of
the test. To automate this, the preprocessor comesin handy; the T (') and B(') macros each
take the expression you want to execute. They call that expression, then call print(), passing
it the result vector (they assume the expression changes a vector named r and br,
respectively), and to produce the message the expression is “string-ized” using the
preprocessor. So that way you see the code of the expression that is executed followed by the
result vector.

The last little tool is a generator object that creates random bool values. To do this, it gets a
random number from rand() and teststo seeif it's greater than RAND_M AX/2. If the
random numbers are evenly distributed, this should happen half the time.

In main(), three vector <int> are created: x and y for source values, and r for results. To
initialize x and y with random values no greater than 50, a generator of type URandGen is
used; thiswill be defined shortly. Since there is one operation where elements of x are divided
by elements of y, we must ensure that there are no zero values of y. Thisis accomplished
using the transform() algorithm, taking the source values fromy and putting the results back
into y. The function object for thisis created with the expression:

bi nd2nd(pl us<i nt>(), 1)

This uses the plus function object that adds two objects together. It is thus a binary function
which requires two arguments; we only want to pass it one argument (the element fromy) and
have the other argument be the value 1. A “binder” doesthetrick (we will look at these next).
The binder in this case says “make a new function object which is the plus function object
with the second argument fixed at 1.”

Another of the testsin the program compares the elements in the two vectors for equality, so
it isinteresting to guarantee that at least one pair of elementsis equivalent; in this case
element zero is chosen.

Once the two vectors are printed, T() is used to test each of the function objects that produces
anumerical value, and then B() is used to test each function object that produces a Boolean
result. Theresult is placed into a vector <bool>, and when this vector is printed it produces a
‘1’ for atruevalueand a*‘0’ for afalse value.

Binders

It's common to want to take a binary function object and to “bind” one of its argumentsto a
constant value. After binding, you get a unary function object.

Chapter 15: Multiple Inheritance
269

For example, suppose you want to find integers that are less than a particular value, say 20.
Sensibly enough, the STL algorithms have a function called find_if() that will search through
a sequence; however, find_if() requires aunary predicate to tell it if thisiswhat you're
looking for. This unary predicate can of course be some function object that you have written
by hand, but it can also be created using the built-in function object templates. In this case, the
less template will work, but that produces a binary predicate, so we need some way of

forming a unary predicate. The binder templates (which work with any binary function object,
not just binary predicates) give you two choices:

bind1st(const BinaryFunction& op, const T& t);
bind2nd(const BinaryFunction& op, const T& t);

Both bind t to one of the arguments of op, but bind1st() bindst to the first argument, and
bind2nd() bindst to the second argument. With less, the function object that provides the
solution to our exerciseis:

| bi nd2nd(1 ess<i nt >(), 20);

This produces a new function object that returnstrueif its argument isless than 20. Hereit is,
used with find_if():

//: CO5: Bi nder 1. cpp

/1 Using STL "binders"
#i ncl ude "Cenerators. h"
#i ncl ude "copy_if.h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >
usi ng nanmespace std;

int main() {

const int sz = 10;

const int max = 40;

vector<int> a(sz), r;

URandGen ur g(max) ;

ostream.iterator<int> out(cout, " ");

generate_n(a. begin(), sz, urg);

copy(a. begin(), a.end(), out);

int* d = find_if(a.begin(), a.end(),
bi nd2nd(Il ess<i nt>(), 20));

cout << "\n *d = " << *d << endl;

/1 copy_if() is not in the Standard C++ library

/1 but is defined later in the chapter:

copy_if(a.begin(), a.end(), back_inserter(r),
bi nd2nd(Il ess<i nt>(), 20));

Chapter 15: Multiple Inheritance
270

copy(r.begin(), r.end(), out);
cout << endl;
Y I~

The vector <int> a isfilled with random numbers between 0 and max. find_if() finds the first
element in a that satisfies the predicate (that is, which isless than 20) and returns an iterator to
it (here, the type of the iterator is actually just int* although | could have been more precise

and said vector <int>::iterator instead).

A more interesting algorithm to useis copy_if(), which isn't part of the STL but is defined at

the end of this chapter. This algorithm only copies an element from the source to the
destination if that element satisfies a predicate. So the resulting vector will only contain
elements that are less than 20.

Here's a second example, using a vector <string> and replacing strings that satisfy particular

conditions:

//: CO5: Bi nder 2. cpp
/1 More binders

#i ncl ude <al gorithne
#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp
#i ncl ude <functional >
usi ng nanmespace std;

int main() {
ostream.iterator<string> out(cout, " ");
vector<string> v, r;
v. push_back("H ");
v. push_back("H ");
v. push_back(" Hey");
v. push_back(" Hee");
v. push_back("H ");
copy(v. begin(), v.end(), out);
cout << endl
/'l Replace each "H " with "Ho":
repl ace_copy_if(v. begin(), v.end(),
back_inserter(r),
bi nd2nd(equal _to<string>(), "H "), "Ho");
copy(r.begin(), r.end(), out);
cout << endl
/! Replace anything that's not "H " with "Ho":
repl ace_if(v.begin(), v.end(),
not 1(bi nd2nd(equal _to<string>(),"H ")), "Ho");

Chapter 15: Multiple Inheritance
271

copy(v.begin(), v.end(), out);
cout << endl
Y I~

This uses another pair of STL agorithms. The first, replace_copy_if(), copies each element
from a source range to a destination range, performing replacements on those that satisfy a
particular unary predicate. The second, replace if(), doesn’t do any copying but instead
performs the replacements directly into the original range.

A binder doesn’t have to produce a unary predicate; it can also create a unary function (that is,
afunction that returns something other than bool). For example, suppose you'd like to
multiply every element in avector by 10. Using a binder with the transform() algorithm
does the trick:

//: CO5: Bi nder 3. cpp

/1 Binders aren't limted to producing predicates
#i ncl ude "Generators. h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

int main() {
ostream.iterator<int> out(cout, " ");
vector<int> v(15);
generate(v. begin(), v.end(), URandGen(20));
copy(v. begin(), v.end(), out);
cout << endl
transformv. begin(), v.end(), v.begin(),

bi nd2nd(mul ti plies<int>(), 10));

copy(v. begin(), v.end(), out);
cout << endl

Y I~

Since the third argument to transform() is the same as the first, the resulting elements are
copied back into the source vector. The function object created by bind2nd() in this case
produces an int result.

The “bound” argument to a binder cannot be a function object, but it does not have to be a
compile-time constant. For example:

/1: CO5: Bi nder4. cpp

/1 The bound argunent does not have
/1 to be a conpile-tine constant

#i nclude "copy_if.h"

Chapter 15: Multiple Inheritance
272

#i
#i
#i
#i
#i
#i

}

ncl ude "Print Sequence. h"
nclude "../require.h"
ncl ude <i ostreane

ncl ude <al gorithnp

ncl ude <functional >

ncl ude <cstdli b>

usi ng nanmespace std;
i nt boundedRand() { return rand() % 100; }

int main(int argc, char* argv[]) {

requi reArgs(argc, 1, "usage: Binder4 int");
const int sz = 20;
int a[20], b[20] = {0};
generate(a, a + sz, boundedRand);
int* end = copy_if(a, a + sz, b,
bi nd2nd(greater<int>(), atoi(argv[1])));
/1 Sort for easier view ng:
sort(a, a + sz);
sort (b, end);

print(a, a + sz, "array a", " ");
print(b, end, "values greater than yours"," ");
111~

Here, an array isfilled with random numbers between 0 and 100, and the user provides a
value on the command line. In the copy_if() call, you can see that the bound argument to
bind2nd() isthe result of the function call atoi() (from <cstdlib>).

Function pointer adapters

Any place in an STL algorithm where a function object is required, it's very conceivable that
you'd like to use a function pointer instead. Actually, you can use an ordinary function
pointer —that’s how the STL was designed, so that a“function object” can actually be
anything that can be dereferenced using an argument list. For example, the rand() random
number generator can be passed to generate() or generate_n() as afunction pointer, like

this:

#i
#i
#i
#i
#i
#i

/1: CO5: RandGenTest . cpp
/1 Alittle test of the random nunber generator

ncl ude <al gorithnp
ncl ude <vect or >

ncl ude <i ostreanr
ncl ude <functi onal >
ncl ude <cstdlib>
ncl ude <cti nme>

Chapter 15: Multiple Inheritance

273

usi ng namespace std;

int main() {
const int sz = 10000;

int v[sz];
srand(time(0)); // Seed the random gener at or
for(int i =0; i < 300; i++) {

/1 Using a naked pointer to function:
generate(v, v + sz, std::rand);
int count = count _if(v, v + sz,
bi nd2nd(greater<int>(), RAND MAX/ 2));
cout << (((double)count)/((double)sz)) * 100
<< ' '

}
Y 11~

The “iterators” in this case are just the starting and past-the-end pointers for the array v, and
the generator isjust a pointer to the standard library rand() function. The program repeatedly
generates a group of random numbers, then it uses the STL algorithm count_if() and a
predicate that tells whether a particular element is greater than RAND_M AX/2. Theresultis
the number of elements that match this criterion; thisis divided by the total number of
elements and multiplied by 100 to produce the percentage of elements greater than the
midpoaint. If the random number generator is reasonable, this value should hover at around
50% (of course, there are many other tests to determine if the random number generator is
reasonable).

The ptr_fun() adapters take a pointer to afunction and turn it into a function object. They are
not designed for a function that takes no arguments, like the one above (that is, a generator).
Instead, they are for unary functions and binary functions. However, these could also be
simply passed asif they were function objects, so the ptr_fun() adapters might at first appear
to be redundant. Here' s an example where using ptr_fun() and simply passing the address of
the function both produce the same results:

//: CO5:PtrFunl. cpp

/1 Using ptr_fun() for single-argunent functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng nanmespace std;

char* n[] = { "01.23", "91.370", "56.661",
"023.230", "19.959", "1.0", "3.14159" };
const int nsz = sizeof n / sizeof *n;

Chapter 15: Multiple Inheritance
274

t enpl at e<t ypenane | nputlter>
void print(lnputlter first, Inputlter last) {
while(first = last)
cout << *first++ << "\t";
cout << endl;

}

int main() {
print(n, n + nsz);
vect or <doubl e> vd
transform(n, n + nsz, back_inserter(vd), atof);
print(vd. begin(), vd.end());
transform(n,n + nsz,vd. begin(), ptr_fun(atof));
print(vd. begin(), vd.end());

Y I~

The goal of this program isto convert an array of char* which are ASCII representations of
floating-point numbers into a vector <double>. After defining this array and the print()
template (which encapsulates the act of printing a range of elements), you can see
transform() used with atof() asa*“naked” pointer to afunction, and then a second time with
atof passed to ptr_fun(). The results are the same. So why bother with ptr_fun()? Well, the
actual effect of ptr_fun() isto create afunction object with an operator (). This function
object can then be passed to other template adapters, such as binders, to create new function
objects. Asyou'll see a bit later, the SGI extensions to the STL contain a number of other
function templates to enable this, but in the Standard C++ STL there are only the bind1st()
and bind2nd() function templates, and these expect binary function objects as their first
arguments. In the above example, only the ptr_fun() for aunary function is used, and that
doesn’t work with the binders. So ptr_fun() used with aunary function in Standard C++
really is redundant (note that Gnu g++ usesthe SGI STL).

With a binary function and a binder, things can be a little more interesting. This program
produces the squares of the input vector d:

//: CO5:PtrFun2.cpp

/1 Using ptr_fun() for two-argument functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

#i ncl ude <cnmat h>

usi ng nanmespace std;

doubl e d[] = { 01.23, 91.370, 56.661,
023.230, 19.959, 1.0, 3.14159 };
const int dsz = sizeof d / sizeof *d;

Chapter 15: Multiple Inheritance
275

int main() {
vect or <doubl e> vd;
transform(d, d + dsz, back_inserter(vd),
bi nd2nd(ptr_fun(pow), 2.0));
copy(vd. begin(), vd.end(),
ostream.terator<doubl e>(cout, " "));
cout << endl
Y I~

Here, ptr_fun() isindispensable; bind2nd() must have afunction object asits first argument
and a pointer to function won't cut it.

A trickier problem isthat of converting a member function into a function object suitable for
using in the STL algorithms. As a simple example, suppose we have the “shape” problem and
would like to apply the draw() member function to each pointer in a container of Shape:

/1: CO5: MenfFunl. cpp

/1 Applying pointers to nenber functions
#i nclude "../purge.h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

cl ass Shape {

public:
virtual void draw() = 0;
virtual ~Shape() {}

}s

class Circle : public Shape {
public:
virtual void draw() {
cout << "Circle::Draw()" << endl;
}
~Circle() {
cout << "Circle::~Circle()" << endl
}
b

class Square : public Shape {
public:
virtual void draw() {

Chapter 15: Multiple Inheritance
276

cout << "Square::Draw()" << endl;
}
~Square() {

cout << "Square::~Square()" << endl;
}

}s

int main() {
vect or <Shape*> vs;
vs. push_back(new Circle);
vs. push_back(new Square);
for_each(vs. begin(), vs.end(),

mem f un(&Shape: : draw));

purge(vs);

Y I~

Thefor_each() function does just what it sounds like it does: passes each element in the
range determined by the first two (iterator) arguments to the function object which isitsthird
argument. In this case we want the function object to be created from one of the member
functions of the classitself, and so the function object’ s “argument” becomes the pointer to
the object that the member function is called for. To produce such a function object, the
mem_fun() template takes a pointer to member as its argument.

The mem_fun() functions are for producing function objects that are called using a pointer to
the object that the member functionis called for, while mem_fun_ref() isused for calling the
member function directly for an object. One set of overloads of both mem_fun() and
mem_fun_ref() are for member functions that take zero arguments and one argument, and
thisis multiplied by two to handle const vs. non-const member functions. However,
templates and overloading takes care of sorting all of that out; all you need to remember is
when to use mem_fun() vs. mem_fun_ref().

Suppose you have a container of objects (not pointers) and you want to call a member
function that takes an argument. The argument you pass should come from a second container
of objects. To accomplish this, the second overloaded form of the transform() algorithmis
used:

/1: CO5: MenfFun2. cpp

/1 Applying pointers to nenber functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

class Angle {
i nt degrees;

Chapter 15: Multiple Inheritance
277

public:
Angl e(int deg) : degrees(deg) {}
int mul (int times) {
return degrees *= tines;
}
b

int main() {
vect or <Angl e> va
for(int i =0; i <50; i += 10)
va. push_back(Angle(i));
int x[] ={1, 2, 3, 4, 5};
transformva. begin(), va.end(), Xx,
ostreamiterator<int>(cout, " "),
mem fun_ref (&Angle::mul));
cout << endl
Y I~

Because the container is holding objects, mem_fun_ref() must be used with the pointer-to-
member function. This version of transform() takes the start and end point of the first range
(where the objects live), the starting point of second range which holds the arguments to the
member function, the destination iterator which in this case is standard output, and the
function object to call for each object; this function object is created with mem_fun_ref()
and the desired pointer to member. Notice the transform(') and for_each() template
functions are incomplete; transform() requires that the function it calls return a value and
thereis no for_each() that passes two arguments to the function it calls. Thus, you cannot
call amember function that returns void and takes an argument using transform() or
for_each().

Any member function works, including those in the Standard libraries. For example, suppose
you'd like to read afile and search for blank lines; you can use the string::empty() member
function like this:

/1 : CO5: Fi ndBl anks. cpp

/1 Denpnstrate memfun_ref() with string::enmpty()
#include "../require. h"

#i ncl ude <al gorithne

#i nclude <list>

#i ncl ude <string>

#i ncl ude <fstreanr

#i ncl ude <functional >

usi ng nanmespace std;

typedef list<string>: :iterator LSI;

Chapter 15: Multiple Inheritance
278

LSl bl ank(LSI begin, LSI end) {
return find_if(begin, end,
mem fun_ref (&string::enpty));
}

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
list<string> I|s;
string s;
whil e(getline(in, s))
I s. push_back(s);
LSl Isi = blank(ls.begin(), Is.end());
while(lsi !'=1Is.end()) {
*Isi = "A BLANK LI NE";
I'si = blank(lsi, Is.end());
}
string f(argv[1]);
f += ".out";
of streamout (f.c_str());
copy(ls.begin(), Is.end(),
ostream.iterator<string>(out, "\n"));
Y I~

The blank () function uses find_if() to locate the first blank line in the given range using
mem_fun_ref() with string::empty(). After thefile is opened and read into thelist, blank()
is called repeated times to find every blank line in the file. Notice that subsequent callsto
blank() use the current version of the iterator so it moves forward to the next one. Each time
ablank lineisfound, it is replaced with the characters “A BLANK LINE.” All you have to do
to accomplish thisis dereference the iterator, and you select the current string.

SGI extensions

The SGI STL (mentioned at the end of the previous chapter) also includes additional function
object templates, which allow you to write expressions that create even more complicated
function objects. Consider a more involved program which converts strings of digitsinto
floating point numbers, like Ptr Fun2.cpp but more general. First, here’'s a generator that
creates strings of integers that represent floating-point values (including an embedded decimal
point):

//: CO5: NunttringGen. h
/1 A random nunber generator that produces
/1 strings representing floating-point nunbers

Chapter 15: Multiple Inheritance
279

#i f ndef NUMSTRI NGGEN_H
#defi ne NUMSTRI NGGEN_H
#i ncl ude <string>

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

class NunBtringGen {
const int sz; // Number of digits to make
public:
NunttringGen(int ssz = 5) : sz(ssz) {
std::srand(std::tinme(0));
}

std::string operator()() {
static char n[] = "0123456789";
const int nsz = 10;

std::string r(sz, ' ');
for(int i =0; i < sz; i++4)
if(i == sz/2)
ri(i] ="'."; /Il Insert a decinal point
el se
r[i] = n[std::rand() % nsz];
return r;

}
b
#endif // NUVBTRINGGEN H ///:~

Youtell it how big the strings should be when you create the NumStringGen object. The
random number generator isused to select digits, and a decimal point is placed in the middle.

The following program (which works with the Standard C++ STL without the SGI
extensions) uses NumStringGen to fill avector<string>. However, to use the Standard C
library function atof() to convert the strings to floating-point numbers, the string objects
must first be turned into char pointers, since there is no automatic type conversion from
string to char*. The transform(') agorithm can be used with mem_fun_ref() and
string::c_str() to convert all the stringsto char*, and then these can be transformed using
atof:

/1: CO5: MenFun3. cpp

/1 Using mem fun()

#i nclude "NunstringGen. h"
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <functional >

Chapter 15: Multiple Inheritance
280

usi ng namespace std;

int main() {
const int sz = 9;
vector<string> vs(sz);
/1 Fill it with random nunber strings:
generate(vs. begin(), vs.end(), NunStringGen());
copy(vs. begin(), vs.end(),
ostream.iterator<string>(cout, "\t"));
cout << endl
const char* vcp[sz];
transformvs. begin(), vs.end(), vcp,
mem fun_ref (&string::c_str));
vect or <doubl e> vd
transformvecp, vep + sz, back_inserter(vd),
std::atof);
copy(vd. begin(), vd.end(),
ostream.iterator<doubl e>(cout, "\t"));
cout << endl
Y I~

The SGI extensionsto the STL contain a number of additional function object templates that
accomplish more detailed activities than the Standard C++ function object templates,
including identity (returnsits argument unchanged), project1st and project2nd (to take two
arguments and return the first or second one, respectively), select1st and select2nd (to take a
pair object and return the first or second element, respectively), and the “compose” function
templates.

If you're using the SGI extensions, you can make the above program denser using one of the
two “compose” function templates. The first, composel(f1, f2), takes the two function objects
f1 and f2 asits arguments. It produces a function object that takes a single argument, passes it
to f2, then takes the result of the call to f2 and passesit to f1. Theresult of f1 is returned. By
using composel(), the process of converting the string objects to char*, then converting the
char* to afloating-point number can be combined into a single operation, like this:

//: CO5: MenfFun4. cpp

/1 Using the SA@ STL conposel function
#i ncl ude "NunttringGen. h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
281

int main() {
const int sz = 9;
vector<string> vs(sz);
/1 Fill it with random nunber strings:
generate(vs. begin(), vs.end(), NunStringGen());
copy(vs. begin(), vs.end(),
ostream.iterator<string>(cout, "\t"));
cout << endl
vect or <doubl e> vd
transformvs. begin(), vs.end(), back_inserter(vd),
conposel(ptr_fun(atof),
mem fun_ref (&string::c_str)));
copy(vd. begin(), vd.end(),
ostream.iterator<doubl e>(cout, "\t"));
cout << endl
Y I~

Y ou can see there’s only asingle call to transform() now, and no intermediate holder for the
char pointers.

The second “compose” function is compose2(), which takes three function objects as its
arguments. The first function object is binary (it takes two arguments), and its arguments are
the results of the second and third function objects, respectively. The function object that
results from compose2() expects one argument, and it feeds that argument to the second and
third function objects. Here is an example:

/1: CO05: Conpose2. cpp

/1 Using the SG@ STL compose2() function
#i nclude "copy_if.h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

#i ncl ude <cstdli b>

#i ncl ude <cti ne>

usi ng nanmespace std;

int main() {
srand(tinme(0));
vector<int> v(100);
generate(v.begin(), v.end(), rand);
transformv. begin(), v.end(), v.begin(),
bi nd2nd(di vi des<i nt>(), RAND MAX/ 100));
vector<int> r;
copy_if(v.begin(), v.end(), back_ inserter(r),

Chapter 15: Multiple Inheritance
282

conpose2(| ogi cal _and<bool >(),
bi nd2nd(greater_equal <int>(), 30),
bi nd2nd(| ess_equal <i nt>(), 40)));
sort(r.begin(), r.end());
copy(r.begin(), r.end(),
ostreamiterator<int>(cout, " "));
cout << endl
Y I~

The vector <int> v isfirst filled with random numbers. To cut these down to size, the
transform() algorithmis used to divide each value by RAND_M AX/100, which will force
the values to be between 0 and 100 (making them more readable). The copy_if() algorithm
defined later in this chapter is then used, along with a composed function object, to copy all
the elements that are greater than or equal to 30 and less than or equal to 40 into the
destination vector <int>r. Just to show how easy it is, r is sorted, and then displayed.

The arguments of compose2() say, in effect:
| (x >= 30) && (x <= 40)

Y ou could also take the function object that comes from a composel() or compose2() call
and passit into another “compose” expression ... but this could rapidly get very difficult to
decipher.

Instead of all this composing and transforming, you can write your own function objects
(without using the SGI extensions) as follows:

/1: CO05: NoConpose. cpp
/1 Witing out the function objects explicitly
#i nclude "copy_if.h"
#i ncl ude <al gorithne
#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp
#i ncl ude <functional >
#i ncl ude <cstdlib>

#i ncl ude <cti nme>
usi ng namespace std;

class Rgen {
const int max;
public:
Rgen(int mx = 100) : nax(RAND _MAX/ nx) {
srand(tinme(0));
}

int operator()() { return rand() / max; }

Chapter 15: Multiple Inheritance
283

}s

cl ass BoundTest {
int top, bottom
public:
BoundTest (int b, int t) : bottom(b), top(t) {}
bool operator()(int arg) {
return (arg >= botton) && (arg <= top);
}

}s

int main() {
vector<int> v(100);
generate(v.begin(), v.end(), Rgen());
vector<int> r;
copy_if(v.begin(), v.end(), back inserter(r),
BoundTest (30, 40));
sort(r.begin(), r.end());
copy(r.begin(), r.end(),
ostreamiterator<int>(cout, " "));
cout << endl
Y I~

There are afew more lines of code, but you can’t deny that it's much clearer and easier to
understand, and therefore to maintain.

We can thus observe two drawbacks to the SGI extensions to the STL. Thefirst is simply that
it's an extension; yes, you can download and use them for free so the barriersto entry are low,
but your company may be conservative and decide that if it's not in Standard C++, they don’t
want to use it. The second drawback is complexity. Once you get familiar and comfortable
with the idea of composing complicated functions from simple ones you can visually parse
complicated expressions and figure out what they mean. However, my guess is that most
people will find anything more than what you can do with the Standard, non-extended STL
function object notation to be overwhelming. At some point on the complexity curve you have
to bite the bullet and write aregular class to produce your function object, and that point
might as well be the point where you can’t use the Standard C++ STL. A stand-alone class for
afunction object is going to be much more readable and maintainable than a complicated
function-composition expression (although my sense of adventure does lure me into wanting
to experiment more with the SGI extensions...).

Asafinal note, you can’'t compose generators; you can only create function objects whose
oper ator () requires one or two arguments.

Chapter 15: Multiple Inheritance
284

A catalog of STL algorithms

This section provides a quick reference for when you' re searching for the appropriate
algorithm. | leave the full exploration of all the STL algorithms to other references (see the
end of this chapter, and Appendix X X), along with the more intimate details of complexity,
performance, etc. My goal hereisfor you to become rapidly comfortable and facile with the
algorithms, and | will assume you will look into the more specialized references if you need
more depth of detail.

Although you will often see the algorithms described using their full template declaration
syntax, | am not doing that here because you already know they are templates, and it's quite
easy to see what the template arguments are from the function declarations. The type names
for the arguments provide descriptions for the types of iterators required. | think you'll find
thisformis easier to read, while you can quickly find the full declaration in the template
header fileif for some reason you feel the need.

The names of the iterator classes describe the iterator type they must conform to. The iterator
types were described in the previous chapter, but here is a summary:

Inputlterator. You (or rather, the STL algorithm and any algorithms you write that
use | nputlterators) can increment this with operator ++ and dereference it with
oper ator* to read the value (and only read the value), but you can only read each
value once. I nputlterators can be tested with operator == and operator!=. That's
all. Because an I nputlterator isso limited, it can be used with istreams (via
istream_iterator).

Outputlterator. This can be incremented with oper ator ++, and dereferenced with
oper ator* to write the value (and only write the value), but you can only
dereference/write each value once. Outputlterators cannot be tested with

oper ator == and oper ator ! =, however, because you assume that you can just keep
sending elements to the destination and that you don’t have to seeif the destination’s
end marker has been reached. That is, the container that an Outputlterator
references can take an infinite number of objects, so no end-checking is necessary.
This requirement isimportant so that an Outputlterator can be used with ostreams
(viaostream iterator), but you'll also commonly use the “insert” iterators
insert_iterator, front_insert_iterator and back insert_iterator (generated by the
helper templatesinserter (), front_inserter() and back_inserter()).

With both Inputlterator and Outputlterator, you cannot have multiple iterators
pointing to different parts of the same range. Just think in terms of iteratorsto
support istreams and ostreams, and I nputlterator and Outputlterator will make
perfect sense. Also note that I nputlterator and Outputlterator put the weakest
restrictions on the types of iterators they will accept, which means that you can use
any “more sophisticated” type of iterator when you see I nputlterator or
Outputlterator used as STL agorithm template arguments.

Chapter 15: Multiple Inheritance
285

Forwardlterator. Inputlterator and Outputlterator are the most restricted, which
means they’ [I work with the largest number of actual iterators. However, there are
some operations for which they are too restricted; you can only read from an
Inputlterator and write to an Outputlterator, so you can't use them to read and
modify arange, for example, and you can’'t have more than one active iterator on a
particular range, or dereference such an iterator more than once. With a

Forwar dlterator these restrictions are relaxed; you can still only move forward
using oper ator ++, but you can both write and read and you can write/read multiple
times in each location. A Forwardlterator is much morelike aregular pointer,
whereas Inputlterator and Outputlterator are a bit strange by comparison.

Bidirectionallterator. Effectively, thisisaForwardlterator that can also go
backward. That is, aBidirectionallterator supportsall the operationsthat a
Forwardlterator does, but in addition it has an oper ator --.

RandomAccesslterator. Aniterator that is random access supports al the same
operations that a regular pointer does: you can add and subtract integral valuesto
move it forward and backward by jumps (rather than just one element at atime), you
can subscript it with operator|[], you can subtract one iterator from another, and
iterators can be compared to see which is greater using oper ator <, oper ator >, etc. If
you' re implementing a sorting routine or something similar, random access iterators
are necessary to be able to create an efficient algorithm.

The names used for the template parameter types consist of the above iterator types
(sometimeswitha ‘1’ or ‘2" appended to distinguish different template arguments), and may
also include other arguments, often function objects.

When describing the group of elements that an operation is performed on, mathematical
“range’ notation will often be used. In this, the square bracket means “includes the end point”
while the parenthesis means “does not include the end point.” When using iterators, arangeis
determined by the iterator pointing to the initial element, and the “ past-the-end” iterator,
pointing past the last element. Since the past-the-end element is never used, the range
determined by a pair of iterators can thus be expressed as [first, last), where first isthe
iterator pointing to theinitial element and last is the past-the-end iterator.

Most books and discussions of the STL algorithms arrange them according to side effects:
non-mutating algorithms don’t change the elements in the range, mutating algorithms do
change the elements, etc. These descriptions are based more on the underlying behavior or
implementation of the algorithm —that is, the designer’s perspective. In practice, | don’t find
thisa very useful categorization so | shall instead organize them according to the problem you
want to solve: are you searching for an element or set of elements, performing an operation on
each element, counting elements, replacing elements, etc. This should help you find the one
you want more easily.

Note that all the algorithms are in the namespace std. If you do not see a different header
such as <utility> or <numerics> above the function declarations, that meansit appearsin
<algorithm>.

Chapter 15: Multiple Inheritance
286

Support tools for example creation

It's useful to create some basic tools with which to test the algorithms.

Displaying arange is something that will be done constantly, so here is atemplatized function
that allows you to print any sequence, regardless of the type that’sin that sequence:

/1: CO5: PrintSequence. h

/1 Prints the contents of any sequence
#i f ndef PRI NTSEQUENCE_H

#def i ne PRI NTSEQUENCE_H

#i ncl ude <i ostreanp

t enpl at e<t ypenane | nputlter>
void print(lnputlter first, Inputlter |ast,
char* nm="", char* sep = "\n",
std::ostream& os = std::cout) {
if(*nm!="\0") // Only if you provide a string
0S << nm<< ": " << sep; // is this printed
while(first = last)
0s << *first++ << sep;
0s << std::endl;

}

/1 Use tenplate-tenplates to allow type deduction
/1 of the typenane T:
tenpl at e<t ypenane T, tenpl ate<typenane> class C
void print(C<T>& ¢, char* nm="",

char* sep = "\n",

std::ostream& os = std::cout) {

if(*nm!="\0") // Only if you provide a string

0S << nm<< ": " << sep; // is this printed
std::copy(c. begin(), c.end(),
std::ostreamiterator<T>(os, " "));

cout << endl;

}
#endif // PRINTSEQUENCE H ///: ~

There are two forms here, one that requires you to give an explicit range (this allows you to
print an array or a sub-sequence) and one that prints any of the STL containers, which
provides notational convenience when printing the entire contents of that container. The
second form performs template type deduction to determine the type of T so it can be used in
the copy() algorithm. That trick wouldn’t work with the first form, so the copy() agorithmis
avoided and the copying is just done by hand (this could have been done with the second form

Chapter 15: Multiple Inheritance
287

aswell, but it'sinstructive to see a template-template in use). Because of this, you never need
to specify the type that you' re printing when you call either template function.

The default isto print to cout with newlines as separators, but you can change that. Y ou may
also provide a message to print at the head of the output.

Next, it's useful to have some generators (classes with an oper ator () that returns values of
the appropriate type) which allow a sequence to be rapidly filled with different values.

/1. CO5:Generators.h

/1 Different ways to fill sequences
#i f ndef GENERATORS H

#def i ne GENERATORS H

#i ncl ude <set >

#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cti nme>

/1 A generator that can skip over numnbers:
cl ass Ski pGen {
int i;
i nt skp;
publi c:
Ski pGen(int start = 0, int skip = 1)
i (start), skp(skip) {}
int operator()() {
int r =1i;
i += skp;
return r;
}
i

/1 Generate unique random nunmbers fromO to nod:
cl ass URandGen ({
std::set<int> used;
i nt nodul us;
public:
URandGen(int nod) : nodul us(nod) {
std::srand(std::time(0));
}
int operator()() {
while(true) {
int i = (int)std::rand() % nodul us;
i f(used.find(i) == used.end()) {
used.insert(i);

Chapter 15: Multiple Inheritance
288

return i;

}
}
}s

/1 Produces random characters:
cl ass Char Gen {
static const char* source;
static const int |en;
public:
CharGen() { std::srand(std::tine(0)); }
char operator()() {
return source[std::rand() %l en];
}

}s

/1 Statics created here for convenience, but
/1 will cause problems if nmultiply included:
const char* Char Gen::source = "ABCDEFGH JK"

" LMNOPQRSTUVWKYZabcdef ghi j kl mmopqr st uvwxyz";
const int CharGen::len = std::strlen(source);
#endi f // GENERATORS H ///: ~

To create some interesting values, the SkipGen generator skips by the value skp each time its
operator () iscalled. You can initialize both the start value and the skip value in the
constructor.

URandGen (‘U’ for “unique”) is agenerator for random ints between 0 and mod, with the
additional constraint that each value can only be produced once (thus you must be careful not
to use up al the values). Thisis easily accomplished with a set.

Char Gen generates char s and can be used to fill up astring (when treating astring asa
sequence container). You'll note that the one member function that any generator implements
isoperator () (with no arguments). Thisiswhat is called by the “generate” functions.

The use of the generators and the print() functionsis shown in the following section.

Finally, a number of the STL algorithms that move elements of a sequence around distinguish
between “ stable” and “unstable” reordering of a sequence. This refersto preserving the
original order of the elements for those elements that are equivalent but not identical. For
example, consider a sequence { c(1), b(1), ¢(2), a(1), b(2), a(2) }. These elements are tested
for equivalence based on their letters, but their numbers indicate how they first appeared in
the sequence. If you sort (for example) this sequence using an unstable sort, there’ s no
guarantee of any particular order among equivalent letters, so you could end up with { a(2),

Chapter 15: Multiple Inheritance
289

a(1), b(1), b(2), c(2), c(2) }. However, if you used a stable sort, it guarantees you will get {
a(1), a(2), b(2), b(2), c(1), c(2) }.

To demonstrate the stability versusinstability of algorithms that reorder a sequence, we need
some way to keep track of how the elements originally appeared. The following is akind of
string object that keeps track of the order in which that particular object originally appeared,
using a static map that maps NStringsto Counters. Each NString then contains an
occurrence field that indicates the order in which this NString was discovered:

//: CO5:NString.h

/1 A "nunbered string" that indicates which
/1 occurrence this is of a particular word
#i f ndef NSTRI NG H

#defi ne NSTRI NG H

#i ncl ude <string>

#i ncl ude <map>

#i ncl ude <i ostreane

class NString {
std::string s;
i nt occurrence;
struct Counter {
int i;
Counter() : i(0) {}
Count er & operator++(int) {
i ++;
return *this;
} // Post-incr
operator int() { returni; }
i
/1 Keep track of the nunber of occurrences:
typedef std::map<std::string, Counter> csmap;
static csmap occur Map;
public:
NString() : occurrence(0) {}
NSt ring(const std::string& x)
s(x), occurrence(occurMap[s]++) {}
NSt ri ng(const char* x)
s(x), occurrence(occurMap[s]++) {}
/1 The synthesized operator= and
/1 copy-constructor are OK here
friend std::ostream& operat or<<(
std::ostream& os, const NString& ns) {
return os << ns.s << " ["

Chapter 15: Multiple Inheritance
290

<< ns.occurrence << "]";

}

/1 Need this for sorting. Notice it only

/1 conpares strings, not occurrences:

friend bool

operator<(const NString& |, const NString& r) {
returnl.s <r.s;

}

/1 For sorting with greater<NString>:

friend bool

operator>(const NString& |, const NString& r) {
returnl.s > r.s;

}

/1 To get at the string directly:

operator const std::string&) const {return s;}

}s

/1 Allocate static nmenber object. Done here for
/1 brevity, but should actually be done in a
/1 separate cpp file:

NString::csmap NString::occur Map;

#endif // NSTRINGH ///:~

In the constructors (one that takes a string, one that takes a char*), the simple-looking
initialization occur rence(occur M ap[s]++) performs all the work of maintaining and
assigning the occurrence counts (see the demonstration of the map classin the previous
chapter for more details).

To do an ordinary ascending sort, the only operator that’ s necessary is
NString::operator <(), however to sort in reverse order the operator>() isaso provided so
that the greater template can be used.

Asthisisjust ademonstration class | am getting away with the convenience of putting the
definition of the static member occur M ap in the header file, but thiswill break down if the
header fileisincluded in more than one place, so you should normally relegate all static
definitionsto cpp files.

Filling & generating
These algorithms allow you to automatically fill arange with a particular value, or to generate
aset of values for a particular range (these were introduced in the previous chapter). The “fill”
functions insert a single value multiple timesinto the container, while the “ generate”
functions use an object called a generator (described earlier) to create the valuesto insert into
the container.

Chapter 15: Multiple Inheritance
291

void fill(ForwardIlterator first, Forwardlterator last, const T& value);
void fill_n(Outputlterator first, Size n, const T& value);

fill() assigns value to every element in the range [first, last). fill_n() assignsvalueton
elements starting at first.

void generate(Forwardlterator first, Forwardlterator last, Generator gen);
void generate n(Outputlterator first, Sizen, Generator gen);

generate() makes acall to gen() for each element in the range [fir , last), presumably to
produce a different value for each element. generate n() calsgen() n times and assigns
each result to n elements starting at fir st.

Example
The following example fills and generates into vectors. It also shows the use of print():

/1: CO5:Fill GenerateTest.cpp

/1 Denonstrates "fill" and "generate"
#i ncl ude "Generators. h"

#i ncl ude "Print Sequence. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <string>

usi ng namespace std;

int main() {
vector<string> v1(5);
fill(vl. begin(), vl.end(), "howdy");
print(vl, "vi", " ");
vector<string> v2
fill _n(back_inserter(v2), 7, "bye");
print(v2.begin(), v2.end(), "v2");
vector<int> v3(10);
generate(v3. begin(), v3.end(), SkipCen(4,5));
print(v3, "v3", " ");
vect or<i nt > v4;
generate_n(back_inserter(v4), 15, URandGen(30));
print(v4, "v4", " ");

Y I~

A vector<string> is created with a pre-defined size. Since storage has aready been created
for all the string objects in the vector, fill() can use its assignment operator to assign a copy
of “howdy” to each space in the vector. To print the result, the second form of print() is used
which simply needs a container (you don't have to give the first and last iterators). Also, the
default newline separator is replaced with a space.

Chapter 15: Multiple Inheritance
292

The second vector <string> v2 isnot given an initial size so back_inserter must be used to
force new elementsin instead of trying to assign to existing locations. Just as an example, the
other print() is used which requires arange.

The generate() and generate_n() functions have the same form as the “fill” functions except
that they use a generator instead of a constant value; here, both generators are demonstrated.

Counting

All containers have amethod size() that will tell you how many elements they hold. The
following two agorithms count objects only if they satisfy certain criteria.

IntegralValue count(Inputlterator first, Inputlterator last,
const EqualityComparable& value);

Produces the number of elementsin [first, last) that are equivalent to value (when tested
using oper ator==).

IntegralValue count_if(Inputlterator first, Inputlterator last, Predicate pred);

Produces the number of elementsin [first, last) which each cause pred to return true.

Example

Here, avector <char> v isfilled with random characters (including some duplicates). A
set<char> isinitialized fromv, so it holds only one of each letter represented inv. Thisset is
used to count all the instances of all the different characters, which are then displayed:

/1: CO05: Counting. cpp

/1 The counting al gorithns
#i ncl ude "Print Sequence. h"
#i ncl ude "Generators. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng namespace std;

int main() {
vect or <char > v;
generate_n(back_inserter(v), 50, CharGen());
print(v, "v", "");
/] Create a set of the characters in v:
set <char> cs(v.begin(), v.end());
set<char>::iterator it = cs.begin();
while(it '= cs.end()) {
int n =count(v.begin(), v.end(), *it);
cout << *it << ": " << np<< ", ",
it++;

Chapter 15: Multiple Inheritance
293

}
int lc = count_if(v.begin(), v.end(),
bi nd2nd(great er<char>(), 'a'));

cout << "\nLowercase letters: " << |lc << endl;
sort(v.begin(), v.end());
print(v, "sorted", "");

Y I~

The count_if() algorithm is demonstrated by counting all the lowercase |etters; the predicate
is created using the bind2nd(') and greater function object templates.

Manipulating sequences

These algorithms allow you to move sequences around.

Outputlterator copy(Ilnputlterator, first Inputlterator last, Outputlterator destination);

Using assignment, copies from [first, last) to destination, incrementing destination after
each assignment. Works with almost any type of source range and almost any kind of
destination. Because assignment is used, you cannot directly insert elements into an empty
container or at the end of a container, but instead you must wrap the destination iterator in an
insert_iterator (typically by using back_inserter(), or inserter () in the case of an
associative container).

The copy algorithmis used in many examplesin this book.

Bidirectionallterator 2 copy_backwar d(Bidirectionallterator 1 fir st,
Bidirectionallterator 1 last, Bidirectionallterator 2 destinationEnd);

Like copy(), but performs the actual copying of the elementsin reverse order. That is, the
resulting sequence isthe same, it’sjust that the copy happensin a different way. The source
range [first, last) is copied to the destination, but the first destination element is
destinationEnd - 1. Thisiterator isthen decremented after each assignment. The space in the
destination range must already exist (to allow assignment), and the destination range cannot
be within the source range.

void reverse(Bidirectionallterator first, Bidirectionallterator last);
Outputlterator reverse _copy(Bidirectionallterator first, Bidirectionallterator last,
Outputlterator destination);

Both forms of this function reverse the range [first, last). reverse() reversestherangein
place, whilereverse_copy() leavesthe origina range alone and copies the reversed elements
into destination, returning the past-the-end iterator of the resulting range.

Forwardlterator2 swap_ranges(Forwardlterator1 first1l, Forwardlterator 1 last],
Forwardlterator 2 first2);

Chapter 15: Multiple Inheritance
294

Exchanges the contents of two ranges of equal size, by moving from the beginning to the end
of each range and swapping each set of elements.

void rotate(Forwardlterator first, Forwardlterator middle, Forwardlterator last);
Outputlterator rotate copy(Forwardlterator first, Forwardlterator middle,
Forwardlterator last, Outputlterator destination);

Swaps the two ranges [first, middle) and [middle, last). With rotate(), the swap is
performed in place, and with rotate_copy() the original range is untouched and the rotated
version is copied into destination, returning the past-the-end iterator of the resulting range.
Note that while swap_ranges() requires that the two ranges be exactly the same size, the
“rotate” functions do not.

bool next_permutation(Bidirectionallterator first, Bidirectionallterator last);

bool next_permutation(Bidirectionallterator first, Bidirectionallterator last,
StrictWeakOrdering binary_pred);

bool prev_permutation(Bidirectionallterator first, Bidirectionallterator last);

bool prev_permutation(Bidirectionallterator first, Bidirectionallterator last,
StrictWeakOrdering binary_pred);

A permutation is one unique ordering of a set of elements. If you have n unique elements,
then there are n! (n factorial) distinct possible combinations of those elements. All these
combinations can be conceptually sorted into a sequence using alexicographical ordering, and
thus produce a concept of a“next” and “previous’ permutation. Therefore, whatever the
current ordering of elementsin the range, there isadistinct “next” and “previous’

permutation in the sequence of permutations.

The next_permutation() and prev_per mutation() functions re-arrange the elements into
their next or previous permutation, and if successful return true. If there are no more “next”
permutations, it means that the elements are in sorted order so next_permutation() returns
false. If there are no more “previous’ permutations, it means that the elementsare in
descending sorted order so previous_permutation() returns false.

The versions of the functions which have a StrictWeakOr dering argument perform the
comparisons using binary_pred instead of operator <.

void random_shuffle(RandomAccessl terator first, RandomAccesslterator last);
void random_shuffle(RandomAccesslterator first, RandomAccesslterator last
RandomNumber Generator & rand);

This function randomly rearranges the elementsin the range. It yields uniformly distributed
results. The first form uses an internal random number generator and the second uses a user-
supplied random-number generator.

Bidirectionallterator partition(Bidirectionallterator first, Bidirectionallterator last,
Predicate pred);
Bidirectionallterator stable partition(Bidirectionallterator first,
Bidirectionallterator last, Predicate pred);

Chapter 15: Multiple Inheritance
295

The “partition” functions use pred to organize the elementsin the range [fir &, last) so they
are before or after the partition (a point in the range). The partition point is given by the
returned iterator. If pred(*i) istrue (wherei istheiterator pointing to a particular element),
then that element will be placed before the partition point, otherwise it will be placed after the
partition point.

With partition(), the order of the elementsis after the function call is not specified, but with
stable_parition() therelative order of the elements before and after the partition point will be
the same as before the partitioning process.

Example
This gives a basic demonstration of sequence manipulation:;

//: CO5: Mani pul ati ons. cpp

/1 Shows basi c mani pul ati ons
#i ncl ude "Print Sequence. h"
#i nclude "NString. h"

#i ncl ude "Generators. h"

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <al gorithne

usi ng namespace std;

int main() {

vector<int> v1(10);

/1 Sinple counting:

generate(vl beg|n() vl.end(), SkipGen());

print(vl, "wvi", " ");

vect or<i nt > v2(v1.size());

copy_backmard(vl begin(), vl.end(), v2.end());

print(v2, "copy_backward", " ");

reverse_copy(vl begi n(), v1 end(), v2.begin());

print(v2, "reverse_copy", " ");

reverse(vl begi n(), vl. end())

print(vl, "reverse", " ");

int half = vi. S|ze() ! 2;

/1 Ranges must be exactly the sane size:

swap_ranges(vl. begin(), vl.begin() + half,
vl. begin() + half);

print(vl, "swap_ranges", " ");

/1l Start with fresh sequence:

generate(vl begin(), vl.end(), SkipGen());

print(vl, "wvi", " ");

int third = vl.size() !/ 3;

Chapter 15: Multiple Inheritance
296

for(int i =0; i < 10; i++) {
rotate(vl. begin(), vl.begin() + third,
vl.end());
print(vl, "rotate", " ");
}
cout << "Second rotate exanple:" << endl
char c[] = "aabbccddeeffgghhiijj";
const char csz = strlen(c);

for(int i =0; i < 10; i++) {
rotate(c, ¢ + 2, ¢ + csz);
print(c, ¢ + csz, "", "");
}

cout << "Al'l n! permutations of abcd:" << endl
int nf =4* 3 * 2 * 1,
char p[] = "abcd";

for(int i =0; i <nf; i++) {
next _permutation(p, p + 4);
print(p, p + 4, "", "");
}
cout << "Using prev_pernutation:" << endl
for(int i =0; i <nf; i++) {
prev_permutation(p, p + 4);
print(p, p + 4, "", "");
}

cout << "random shuffling a word:" << endl
string s("hello");
cout << s << endl
for(int i =0; i <5; i++) {
random shuffl e(s. begin(), s.end());
cout << s << endl
}
NString sa[] ={ "a", "b", "c¢", "d", "a", "b"
"c¢", "d", "a", "b", "c", "d", "a", "b", "c
const int sasz sizeof sa / sizeof *sa;
vector<NString> ns(sa, sa + sasz);
print(ns, "ns", " ");
vector<NString>::iterator it =
partition(ns. begin(), ns.end(),
bi nd2nd(greater<NString>(), "b"));
cout << "Partition point: " << *it << endl
print(ns, "", " ");
/! Rel oad vector:
copy (sa, sa + sasz, ns.hbegin());

{

Chapter 15: Multiple Inheritance
297

it = stable_partition(ns.begin(), ns.end(),
bi nd2nd(greater<NString>(), "b"));
cout << "Stable partition" << endl;

cout << "Partition point: " << *it << endl;
print(ns, "", " ");
Y I~

The best way to see the results of the above program isto run it (you'll probably want to
redirect the output to afile).

The vector<int> vlisinitialy loaded with a simple ascending sequence and printed. You'll

see that the effect of copy_backward() (which copiesinto v2, which isthe same size asv1)
is the same as an ordinary copy. Again, copy_backwar d() does the same thing as copy(), it
just performs the operations in backward order.

reverse_copy(), however, actually does created areversed copy, whilerever se() performs
the reversal in place. Next, swap_ranges() swaps the upper half of the reversed sequence
with the lower half. Of course, the ranges could be smaller subsets of the entire vector, aslong
asthey are of equivalent size.

After re-creating the ascending sequence, rotate() is demonstrated by rotating one third of v1
multiple times. A second rotate() example uses characters and just rotates two characters at a
time. This also demonstrates the flexibility of both the STL algorithms and the print()
template, since they can both be used with arrays of char as easily aswith anything else.

To demonstrate next_per mutation() and prev_permutation(), aset of four characters
“abed” is permuted through al n! (n factorial) possible combinations. You'll see from the
output that the permutations move through a strictly-defined order (that is, permutingisa
deterministic process).

A quick-and-dirty demonstration of random_shuffle() isto apply it to astring and see what
words result. Because a string object has begin(') and end() member functions that return the
appropriate iterators, it too may be easily used with many of the STL agorithms. Of course,
an array of char could also have been used.

Finally, the partition(') and stable_partition() are demonstrated, using an array of NString.
You'll note that the aggregate initialization expression uses char arrays, but NString has a
char* constructor which is automatically used.

When partitioning a sequence, you need a predicate which will determine whether the object
belongs above or below the partition point. This takes a single argument and returns true (the
object is above the partition point) or false (it isn't). | could have written a separate function
or function object to do this, but for something simple, like “the object is greater than ‘b’
why not use the built-in function object templates? The expression is:

| bi nd2nd(great er <NString>(), "b")
And to understand it, you need to pick it apart from the middle outward. First,
| greater<NString>()

Chapter 15: Multiple Inheritance
298

produces a binary function object which comparesits first and second arguments:
return first > second;

and returns a bool. But we don’t want a binary predicate, and we want to compare against the
constant value “b.” So bind2nd() says: create a new function object which only takes one
argument, by taking this greater <NString>() function and forcing the second argument to
alwaysbe“b.” Thefirst argument (the only argument) will be the one from the vector ns.

You'll see from the output that with the unstable partition, the objects are correctly above and
below the partition point, but in no particular order, whereas with the stable partition their
original order is maintained.

Searching & replacing
All of these algorithms are used for searching for one or more objects within a range defined
by the first two iterator arguments.

Inputlterator find(Inputlterator first, Inputlterator last,
const EqualityComparable& value);

Searches for value within arange of elements. Returns an iterator in the range [fir st, last) that
points to the first occurrence of value. If valueisn't in the range, then find() returns last.
Thisisalinear search, that is, it starts at the beginning and looks at each sequential element
without making any assumptions about the way the elements are ordered. In contrast, a
binary_search() (defined later) works on a sorted sequence and can thus be much faster.

Inputlterator find_if(Inputlterator first, Inputlterator last, Predicate pred);

Just like find(), find_if() performs alinear search through the range. However, instead of
searching for value, find_if() looks for an element such that the Predicate pred returnstrue
when applied to that element. Returnslast if no such element can be found.

Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last);
Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last,
BinaryPredicate binary_pred);

Likefind(), performs alinear search through the range, but instead of looking for only one
element it searches for two elements that are right next to each other. The first form of the
function looks for two elements that are equivalent (via operator ==). The second form looks
for two adjacent elements that, when passed together to binary_pred, produce atrue result.
If two adjacent elements cannot be found, last is returned.

Forwardlteratorl find_first_of(Forwardlteratorl firstl, Forwardlteratorl last1,
Forwardlterator2 first2, Forwardlterator2 last2);

Forwardlteratorl find_first_of(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator 2 first2, Forwardlterator2 last2, BinaryPredicate binary_pred);

Chapter 15: Multiple Inheritance
299

Likefind(), performs alinear search through the range. The first form finds the first element
in the first range that is equivalent to any of the elements in the second range. The second
form finds the first element in the first range that produces tr ue when passed to binary_pred
along with any of the elementsin the second range. When aBinaryPredicate is used with
two ranges in the algorithms, the element from the first range becomes the first argument to
binary_pred, and the element from the second range becomes the second argument.

Forwardlterator1 search(Forwardlterator1 first1, Forwardlterator1lastl,
Forwardlterator2 first2, Forwardlterator2 last2);

Forwardlterator 1 search(Forwardlterator 1 firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 last2 BinaryPredicate binary_pred);

Attempts to find the entire range [fir st2, last2) within therange [first1, lastl). That is, it
checksto seeif the second range occurs (in the exact order of the second range) within the
first range, and if so returns an iterator pointing to the place in the first range where the
second range begins. Returns last1 if no subset can be found. The first form performsits test
using oper ator ==, while the second checks to see if each pair of objects being compared
causes binary_pred to return true.

Forwardlteratorl find_end(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator 2 last2);

Forwardlteratorl find_end(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 last2, BinaryPredicate binary_pred);

The forms and arguments are just like sear ch() in that it looks for the second range within the
first range, but while sear ch() looks for the first occurrence of the second range, find_end()
looks for the last occurrence of the second range within the first.

Forwardlterator search_n(Forwardlterator first, Forwardlterator last,
Size count, const T& value);

Forwardlterator search_n(Forwardlterator first, Forwardlterator last,
Size count, const T& value, BinaryPredicate binary_pred);

Looks for a group of count consecutive valuesin [first, last) that are all equal to value (in the
first form) or that all cause areturn value